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ABSTRACT

The main goal of this work is to apply a new stable high order (order q) finite-difference method (FD-q),
based on non-uniform grid points [1], to instability analysis of complex flows. Motivation is offered by
the high cost of spectral methods typically used for this class of problems [2], which can be substantially
reduced by exploiting the sparsity offered by the FD-q scheme, without sacrificing accuracy.

The new method has been validated on the classic Orr-Sommerfeld equation, comparing its re-
sults at different orders against spectral collocation method based on the Chebyshev Gauss-Lobbatto
(CGL) points, and results obtained by alternative FD numerical methods, such as Dispersion-Relation-
Preserving finite difference (DRP) [3] and Compact finite difference (also known as Padé schemes) [4].
Figure 1 shows the relative error of the different techniques in recovering the Plane Poiseuille Flow
(PPF) eigenspectrum; it may be seen that at all orders of discretization the FD-q method presents bet-
ter resolution properties, reaching convergence before any alternative FD method. In addition, beyond
a certain modest value of discretization points, N , the FD-q method employs O(Nq) discretization
points, as opposed to the O(N2) points required by te CGL. This message is reinforced by results of
the Blasius eigenspectrum: figure 2 shows that the FD-q method not only correctly obtains the leading
part of the discrete eigenspectrum in this flow, but, when compared with the standard CGL approach, it
also reproduces a more vertical line as the discrete representation of the continuous spectrum.

These favorable resolution properties of the FD-q method are subsequently applied to recover the
BiGlobal eigenspectrum of square regularized lid-driven cavity at Re = 1000, β = 15. Table 1 shows
convergence study results of three FD-q and a CGL discretization, which establish the FD-q spatial
discretization as a viable alternative to the latter method. The three-dimensional reconstruction of the
BiGlobal modes obtained by the FD-q method are shown in Figure 3. Results of application to other
complex flows will be available at the time of the Conference.
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Figure 1: Relative error comparison for different numerical methods in a Plane Poiseuille flow
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Figure 2: Eigenspectrum in a Blasius boundary layer flow

Figure 3: Amplitude functions corresponding to the most unstable stationary BiGlobal eigenmode (S1).
Left-to-right: û(x, y, z), v̂(x, y, z), ŵ(x, y, z), p̂(x, y, z).



Table 1: BiGlobal instability analysis of the regularized lid-driven cavity flow at A = 1, Re = 1000
and β = 15. Convergence of the most unstable mode for different spatial schemes.

N FD-8 FD-16 FD-24 CGL
32 0.1167494 0.1085822 0.1088816 0.1083455
40 0.1121854 0.1081735 0.1082842 0.1083697
48 0.1095856 0.1085076 0.1083438 0.1083468
56 0.1086749 0.1084422 0.1083214 0.1083409
64 0.1084124 0.1083639 0.1083276 0.1083386
72 0.1083568 0.1083268 0.1083310 0.1083383


