# Travelling wave solution with a $\Lambda$ -vortex pattern in plane Poiseuille flow

## - BIFD2011 -

### M. Nagata<sup>\*</sup>, K. Deguchi<sup>†</sup>

\* Department of Aeronautics and Astronautics, Graduate School of Engineering Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan e-mail: nagata@kuaero.kyoto-u.ac.jp

<sup>†</sup> Department of Aeronautics and Astronautics, Graduate School of Engineering Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan e-mail: ken5-d@t06.mbox.media.kyoto-u.ac.jp

#### ABSTRACT

A new class of travelling wave solutions with a  $\Lambda$ -vortex pattern is found in plane Poiseuille flow by continuing the stationary and travelling hairpin-shaped fluid vortices found in plane Couette flow [1]. The solutions arise from a saddle-node bifurcation at a Reynolds number that is smaller than the critical value known to date [2] (see Figure 1(a)). As seen from Figure 1(b), in contrast to Waleffe's solution[2] which was obtained from Nagata's solution [3] in plane Couette flow by homotopy, the present solution is characterized by two quasi-streamwise low-speed streaks in one spanwise period  $(-\pi/\beta \le y \le \pi/\beta)$  in the vicinity of each boundary. The low-speed streaks are alined with the planes of mirror symmetry,  $y = \pm \pi/(2\beta)$ , with their width varying in a varicose fashion in the streamwise direction. A pair of quasi-streamwise vortices forms a  $\Lambda$ -shaped vortex: vortices are up-lifted downstream while keeping their feet in the neighboring varicose bulges of the streamwise low-speed streaks.

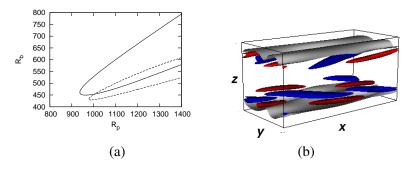



Figure 1: (a):The Reynolds number,  $R_p$ , vs. the bulk Reynolds number,  $R_b$ , for the wavenumber pair  $(\alpha, \beta)$  which give the minimum value for  $R_p$ . The solid and dashed curves correspond to the present solution and Waleffe's solution [2], respectively. (b):The flow pattern of the present solution at  $(R_p, \alpha, \beta) = (937.1, 1.47, 3.06)$ . Iso-surfaces of the streamwise velocity at u = 300 (gray), and the streamwise vorticity at  $\omega_x = 400/-400$  (red/blue).

#### REFERENCES

- K. Deguchi, M. Nagata *Traveling hairpin-shaped fluid vortices in plane Couette flow*, Phys. Rev. E 82, 056325-1–5, 2010.
- [2] F. Waleffe *Homotopy of exact coherent structures in plane shear flows*, Phys. Fluids **15(6)**, 1517-1534, 2003.
- [3] M. Nagata *Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity*, J. Fluid Mech. 217, 519-527, 1990.