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Subcompositional coherence is a fundamental property of Aitchison’s approach to compositional 
data analysis, and is the principal justification for using ratios of components.  For dimension 
reduction of a matrix of compositional data, either an unweighted (Aitchison & Greenacre 2002) or 
weighted (Greenacre & Lewi 2009; Greenacre 2010a: chapter 7) form of log-ratio analysis can be 
used, and these are both subcompositionally coherent.  Many alternative methods that might be 
applied to compositional data are subcompositionally incoherent, but some can be judged to be less 
incoherent than others.  In other words, either for a particular data set, or in general, a method might 
actually be quite subcompositionally “robust” in that its results for a subcomposition are quite close 
to its results for the same components as part of a full composition.   

      So we propose that lack of subcompositional coherence, that is subcompositional incoherence, 
can be measured in an attempt to evaluate whether any given technique is close enough, for all 
practical purposes, to being subcompositionally coherent.  This opens up the field to alternative 
methods, which might be better suited to cope with problems such as data zeros and outliers, while 
being only slightly incoherent.   

 

1.   A measure of subcompositional incoherence 

There are several potential ways for measuring subcompositional incoherence (hereafter referred to 
simply as incoherence), but – since the concept of distance between samples and distances between 
components is fundamental to compositional data analysis – the measure that we propose is based 
on the distance measure between components.    

       Although not demonstrated conclusively, it seems intuitive that two-component 
subcompositions, after reclosure, would be the most sensitive to incoherence.  That is, two 
components will have a certain inter-component distance when part of a full composition, but 
would have a severely changed distance apart when isolated in a two-component composition (apart 
from the log-ratio approach, of course, which maintains the distance fixed, since it will be based on 
the ratio of the two components).  

       Closeness of the distance matrix  based on the two-component composition and the distance 
matrix D between the two components in the full composition can be quantified using a stress 
measure that is common in multidimensional scaling.  Of the available stress measures available, 
we have selected the so-called stress formula 1 (Borg and Groenen, 2007): 

 

      
2

2)(

stress
jj

jjjj

d

d

jj

jj
















                    (1) 

  

2.   An illustration using correspondence analysis 

As an example we measure the incoherence of correspondence analysis (CA) as an increasingly 
strong power-transformation is applied to the data.   It has already been shown that CA of power-
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transformed data converges to log-ratio analysis (LRA) as the power tends to zero (Greenacre 2009, 
2010b).  This means that one can come arbitrarily close to LRA and thus arbitrarily close to 
subcompositional coherence, using CA.   

      The data are compositional oxide measurements of 47 Roman glass cups reported by Baxter, 
Cool and Heyworth (1990).  This data set has 11 components, and we first consider the effect on the 
inter-component distances for subcompositions of different sizes, from 10 down to 2.  Figure 1 
summarizes the results: stress is higher for subcompositions of smaller size, and also stress 
decreases as the power transformation is made stronger (i.e.,  smaller).  Notice that for the tiny 
value of  = 0.001 the stress is practically zero, due to the convergence of CA to LRA. 
 

Average stress for subcompositions of 
different sizes

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10

Size of subcomposition

=1 (regular CA)

=0.001

=0.25

 

 

 

 

 

 

 

 

 

 

 

 

 12

 
Figure 1. Average stress between chi-square distances calculated in subcompositions of different 
sizes and corresponding chi-square distances in the full composition, for regular CA and two 
power-transformed CAs,  = 0.25 and  = 0.001.  In the last case there is almost no 
subcompositional incoherence.  Subcompositions of size 2 are seen to be the worst case.  

 

3.    Discussion 

Two aspects are important: component weighting and data zeros. 

      It has been shown (Greenacre and Lewi, 2009) how differential weighting of the components 
can dramatically improve LRA.  Furthermore, regular CA is much less incoherent when compared 
to weighted LRA.  Principal component analysis (PCA) is found to be much more incoherent by our 
measure. 

     When there are data zeros, the convergence of CA to LRA does not apply when there are zeros in 
the data, or it applies in the sense that CA would diverge at the limit just as with LRA it is 
impossible to compute the ratios.  However, a power transformation of the data (with zeros intact) 
can be sought such that the CA comes the closest to subcompositional coherence while not 
destabilizing the analysis. The CA solution is monitored while reducing the power   successively 
as long as the incoherence descends.   Then at some value of the power the effect of the zeros “kicks 
in” and the incoherence starts to rise again, as illustrated in Figure 2.  It is this value of   that 
should be used to transform the data, giving the least incoherent power-transformed CA, conserving 
the zeros in the data with no need to replace them.  
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Figure 2.  Subcompositional incoherence for power-transformed CA of a data set containing zeros, 
for values of the power  between 1 (regular CA) and 0.001 (almost identical to LRA).   A value 
of 0.46 gives minimum incoherence, which might suggest a square root transformation, for 
example, which is close to the minimum. 
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