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Summary. We consider the modelling of large strain anisotropic plasticity based on
hyperelasticity, the multiplicative decomposition into the elastic and plastic deformation
gradients, and the use of the logarithmic strain measure and its work-conjugate stress mea-
sure. The integration of the plastic deformation gradient is performed using an exponential
mapping. First, we give the continuum mechanics formulation of our proposed theory, and
then we summarize some results considering anisotropic elastic behavior, anisotropic yield
functions and mixed hardening.

1 INTRODUCTION

The development of effective large strain elasto-plasticity formulations has been given
much attention during the recent years, see for example [1, 2] and the references therein.
While isotropic behavior can be modelled quite effectively, the effective solution of aniso-
tropic behavior involving anisotropic hyperelasticity combined with anisotropic yield func-
tions and mixed hardening is much more difficult, theoretically and computationally. In
these cases, the plastic spin may need to be modelled and this requires special considera-
tions. The objective of this presentation is to give a framework for modelling large strain
plasticity with these anisotropic effects.

2 THE CONTINUUM FORMULATION

We use the notation of refs. [3–6] because it is a natural notation to use when actual
solution algorithms are proposed. Let t

0X be the deformation gradient at time t. We base
our theory on the Lee decomposition, so the deformation gradient is decomposed into an
elastic part, Xe, and a plastic part, Xp, with X = XeXp. The spatial velocity gradient
l is decomposed additively into an elastic and a plastic part, where the plastic part is
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lp = Xe
[
Ẋp (Xp)−1

]
(Xe)−1 and Lp := Ẋp (Xp)−1 is the modified plastic velocity gradient.

The symmetric part of Lp is the modified plastic deformation tensor, Dp = sym (Lp),
whereas the skew part is the modified plastic spin, Wp = skw (Lp). The logarithmic
strain tensor is defined as Ee := 1

2
lnCe, where Ce := Xe TXe. Obviously, different strain

measures and their work-conjugate stress measures may always be related by fourth order
mapping tensors. In particular the symmetric part, Ξs, and the skew part, Ξw, of the
Mandel stress tensor Ξ = CeS (where S is the second Piola-Kirchhoff stress tensor) may
be related to a generalized Kirchhoff stress tensor T, work conjugate to the logarithmic
strains, by (see [7, 8])

Ξs = T : SM and Ξw = T : WM = Ee T−TEe (1)

where SM and WM are fourth order mapping tensors, functions of the elastic strains (see
details in Reference [8]). In the case of isotropic elasticity the tensor T coincides with the
usual Kirchhoff stress tensor τ . The anisotropic stored energy function for the anisotropic
material may be assumed to be of the type

tW = U
(

tJ
)

+ µ tEe : tA : tEe (2)

where tA is the elastic anisotropy tensor, whose preferred directions may rotate at a
speed given by WA. In this expression U ( tJ) is the volumetric component, J = det (Xe)
and µ plays the role of a shear modulus. The tensor t+∆t

tR
w := exp

(
t+∆tWp∆t

)
may

be interpreted as a measure of the incremental plastic rotation due to lattice dislocations
(see References [5, 8]). The tensor t+∆t

tR
w defines, from the stress-free configuration, a

configuration in which the plastic rotations are frozen during plastic flow. We label objects
in this configuration by an underlining arrow, i.e. t+∆t E←−

e = t+∆t
tR

wT t+∆tEe t+∆t
tR

w.

Using these expressions and definitions, the rate of stored energy function Ẇ may be
written as

Ẇ = T : L←−Ee + Tw : WA (3)

where L←− (·) is a Lie derivative with t+∆t
tR

w acting as gradient and Tw := Ee T−T Ee ≡
Ξw. Similar expressions apply for the hardening function, H, and the rate of hardening,
Ḣ. All these equations, inserted in the dissipation equation yield the following plastic
dissipation function

Ḋp := Ξs: D
p + Ξw: Wp −Tw : WA −Bs : L←−Ei −Bw : WH − κζ̇ − κwξ̇ ≥ 0 (4)

where Bs is the backstress tensor, Bw := Ei Bs− Bs Ei and Ei are tensorial logarithmic
strain-like internal variables. By WH we denote the spin of the hardening anisotropy
tensor. The underlining arrow in L←−Ei implies a Lie derivative with the internal variables

rotations, t+∆t
tR

wi := exp
(

t+∆tWi∆t
)
, acting as gradient, where Wi is the internal

variables spin tensor. The scalars κ and κw are the effective stress-like internal variables
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(current yield stress and yield couple-stress). The scalars ζ and ξ are the effective strain-
like internal variables (effective plastic strain and effective plastic rotation).
Assume that the elastic region is enclosed by two yield functions fs (Ξs,Bs, κ) and
fw (Ξw,Bw, κw). Then, the Lagrangian for the constrained problem is L = Ḋp− ṫfs−γ̇fw,
where ṫ and γ̇ are the consistency parameters. If we claim that the principle of maximum
dissipation holds, the stress and other internal variables are such that ∇L = 0, i.e. for
the yield function expressions given

∇L = 0 ⇒





∂L

∂Ξs

= 0 ⇒ Dp = ṫ
∂fs

∂Ξs

and
∂L

∂Ξw

= 0 ⇒ Wd = γ̇
∂fw

∂Ξw

∂L

∂Bs

= 0 ⇒ L←−Ei = −ṫ
∂fs

∂Bs

and
∂L

∂Bw

= 0 ⇒ WH = −γ̇
∂fw

∂Bw

∂L

∂κ
= 0 ⇒ ζ̇ = −ṫ

∂fs

∂κ
and

∂L

∂κw

= 0 ⇒ ξ̇ = −γ̇
∂fw

∂κw

(5)

where Wd := Wp −WA.

3 EVOLUTION OF INTERNAL VARIABLES

The evolution of the internal variables requires insight based on theory and experiment
and was a key aspect of our study, which we of course still continue. If, as usual for fs

and then natural for fw, the enclosure of the elastic region is expressed in the form of
fs (Ξs −Bs, ...), fw (Ξw −Bw, ...), then for associated plasticity L←−Ei = Dp and WH =

Wd are automatically enforced. For the specific logarithmic-like internal strain variables
used, the hardening function in terms of those variables and the mentioned form of the
yield functions, we obtain the following computational update

t+∆t
0E

i = t+∆t
tR

wi t
0E

i t+∆t
tR

wi T + ∆t t+∆tDp (6)

Since t+∆tWi does not appear in the dissipation equation, it is not specified directly
by the maximum dissipation principle. A possible choice is t+∆tWi = t+∆tWp, so the
modified plastic spin of the stress-free configuration coincides with the spin of the internal
variables.

4 OBSERVATIONS

The above theory can of course be used with the assumption that the plastic spin is
zero. This assumption is reasonable, and has been used extensively, when von Mises
plasticity with isotropic elastic behavior and mixed hardening is considered. However, it
is then important to not inadvertently introduce an unknown and uncontrolled plastic
spin merely because of assumptions in the numerical integration algorithms. Such cases
were analyzed and discussed in ref. [5].
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However, the major use of the above theory is in modelling anisotropic behavior which
arises due to anisotropic elasticity, anisotropic yield criteria and mixed hardening. The
theory takes into account the rotation of the axes of orthotropy which is assumed to be a
function of the plastic spin. More details of the theoretical framework and the algorithm
used are given in refs [8, 9].
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