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Summary. A variational formulation of the coupled thermo-mechanical boundary-value
problem for general dissipative solids is presented. The coupled thermo-mechanical bound-
ary value problem under consideration consists of the equilibrium problem for a deformable,
inelastic and dissipative solid with the heat conduction problem appended in addition. The
variational formulation allows for general dissipative solids, including finite elastic and
plastic deformations, non-Newtonian viscosity, rate sensitivity, arbitrary flow and harden-
ing rules, as well as heat conduction.We showed that a joint potential function exists such
that both the conservation of energy and the balance of linear momentum equations fol-
low as Euler-Lagrange equations. This variational formulation of the thermo-mechanical
boundary-value problem is then extended to the incremental framework.This allows to
rewrite the update algorithm for the unknown fields over a given time (load) step as an
optimization problem. The resulting variational update leads to an efficient numerical
fully-coupled (i.e. monolithic) finite element formulation of thermo-mechanical problems.

1 INTRODUCTION

This paper is concerned with the formulation of variational principles characterizing
the solutions of the coupled thermo-mechanical problem for general dissipative solids, here
understood as the equilibrium problem of an inelastic deformable solid to which the heat
conduction problem is appended in addition. Problems of this nature arise in a variety of
important fields of application, including: metal forming, machining, casting and other
manufacturing processes; high-velocity impact such as ballistic penetration; and others.
By a general dissipative solid we understand a deformable solid, possibly undergoing large
deformations, possessing viscosity, internal processes and capable of conducting heat. By
a variational characterization of the thermo-mechanical problem, we specifically mean the
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identification of a functional whose stationary points are solutions of the problem. Once
this functional is known, the stable solutions of the problem may be identified with certain
extrema of the functional, should any exist.

The ability to recast the coupled thermo-mechanical problem in variational form has a
number of consequences and some beneficial effects. For instance, the variational frame-
work opens the way for the application of the tools of calculus of variations to the analysis
of the solutions of the problem. A variational statement of the problem also facilitates
the formulation of numerical approximations, e.g., by means of Galerkin or Rayleigh-Ritz
methods. In addition, in its time-discretized form the variational framework leads to
the formulation of robust and efficient state-update algorithms in computational thermo-
viscoplasticity [1].

2 VARIATIONAL FORM OF THE EQUATIONS

As shown in [2], the above thermomechanical equations can be restated under a vari-
ational form, generalizing the approach of Ortiz and Stainier [1], which was restricted
to isothermal processes. Then, the solution to the thermomechanical boundary value
problem in rate form derives from a variational principle:

inf
ϕ̇,H,T,Ṅ ,Ż

Φ(ϕ̇, H , T, Ṅ , Ż) . (1)

where Φ is a suitably chosen potential function of the deformation mapping ϕ, the heat
flux H , the temperature T , the entropy N , and the collection of internal variables Z.
Taking the first variations in (1) yields the mechanical balance law, the conduction law,
the heat equation in entropy form, and the kinetic equations for internal variables. It is
noteworthy that, unlike the potential functions proposed by Biot [3, 4] and subsequently
others [5, 6, 7], the potential Φ in (1) is directly built from general physical quantities,
e.g., the internal energy, entropy and kinetic potential, without any assumptions peculiar
to their specific forms.

3 VARIATIONAL CONSTITUTIVE UPDATES

A time-discretized version of the variational form outlined in the previous section can
be established. Let us consider an incremental procedure, and more particularly a generic
time interval [tn, tn+1]. Let the fields describing the state of the body at time tn (ϕn, Hn,
Tn, Nn, Zn) be known. We then seek to characterize the updated fields, at time tn+1, as
optimizers of a suitably chosen function Φn, inspired from the above potential Φ. The
updated fields are then solutions to the following variational principle:

inf
ϕn+1,Hn+1,Tn+1,Nn+1,Zn+1

Φn(ϕn+1, Hn+1, Tn+1, Nn+1, Zn+1; ϕn, Hn, Tn, Nn, Zn) . (2)

4 CONVERSION OF PLASTIC WORK TO HEAT

The study on heating from plastic power may be traced back to the pioneering work
of Taylor and Quinney, who performed their seminal experimental work in 1937 [8]. In

2



L. Stainier, Q. Yang, and M. Ortiz

Strain

S
tr

es
s

(M
P

a)

0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

1200

= 3000 s , experimentε
. -1

.
ε = 3000 s , predicted

-1

.
ε = 1 s , predicted

-1

.
ε = 1 s , experiment-1

α -titanium

Plastic strain

T
em

pe
ra

tu
re

ris
e

(K
)

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

= 3000 s , experimentε
. -1

.
ε = 3000 s , predicted

-1

.
ε = 1 s , predicted

-1

.
ε = 1 s , experiment-1

α -titanium

Figure 1: Stress-strain curves and adiabatic temperature rise as a function of strain for α-titanium at
strain rates of 1 s−1 and 3000 s−1.

previous theoretical and numerical analyses, it has often been assumed that the local rate
of heating is a constant fraction of the plastic power. But, for engineering materials,
experimental results show considerable variation of the heat to plastic-work ratio with
both strain and strain rate. Within a variational framework the rate of conversion of
plastic work into heat is an outcome of the theory and cannot be modelled independently.
This prediction of the theory provides a test of whether thermo-mechanical behavior of
a solid is variational. We performed this test for two different materials: α-titanium and
Al2024-T3. In particular, we calculated temperature histories under the conditions of the
Kolsky (split-Hopkinson) pressure bar experiment and compared the predictions with the
measurements of Hodowany et al. [9]. These results are illustrated in Figures 1 and 2.
The good correspondence between the theoretical predictions and the experimental data
suggests that both α-titanium and Al2024-T3 are variational.

5 CONCLUSIONS

We have developed a variational framework for the coupled thermo-mechanical bounda-
ry-value problem for general dissipative solids. In this framework, the equations of motion
and the energy balance equation follow jointly as Euler-Lagrange equations of a common
potential function. The equilibrium constitutive relations and kinetic relations of the ma-
terial also follow by taking variations with respect to the internal variables as in previous
variational formulations of the isothermal case [1].
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Figure 2: Stress-strain curves and adiabatic temperature rise as a function of strain for Al2024-T3 at
strain rates of 1 s−1 and 3000 s−1.
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