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Summary. We present a time-discontinuous Galerkin method (TDG) for the dynamic
analysis of fully-saturated porous media. The method consists of a finite element dis-
cretization in space and time simultaneously. The discrete basis functions are continuous
in space and discontinuous in time. The continuity across the time interval is weakly
enforced by the flux function. The resulting Bubnov-Galerkin method is stable and requirs
no extra stabilization term.

1 INTRODUCTION AND GOVERNING EQUATIONS

In our days the Discontinuous Galerkin method has established itself as a viable method
for solving partial differential equations and has found a wide variety of applications,
c. f. [1] and the literature therein for an overview of the state of the art. In this work
we consider a time-discontinuous Galerkin method for a two-phase porous medium with
incompressible constituents. The model equations are based on the well studied Theory
of Porous Media (TPM), c. f. [2] with restriction to the geometrical linear case. The four
fields formulation of the concerned problem was proposed by Diebels and Ehlers [3] in
1996 as follows

u′
S = vS in Ω × I, (1)

(nSρSR + nFρFR)v′
S + nF ρFRw′

F = div
(
TS

E − p I
)
−

(
nSρSR + nF ρFR

)
b in Ω × I, (2)

ρFRv′
S + ρFRw′

F +
nFRγFR

kF
wF + grad p = ρFRb in Ω × I, (3)

div(u′
S + nFwF ) = 0 in Ω × I, (4)

where I denotes the time interval [t0, T ] and Ω is the spatial domain of the body, (·)′α
represents the material time derivative with respect to the constituent ϕα. The variables
are the displacement uS, and the velocity vS of the solid phase, the seepage velocity
wF =vF − vS concerning the relative movement of the fluid phase with respect to the
solid phase, as well as the fluid pore pressure p. The permeability coefficient kF measures
the resistance of the medium to fluid flow, nα = dvα/dv represents the volume fraction
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of the constituent ϕα and ραR represents the effective material density with α ∈ {S, F}
(S for solid, F for fluid). Material incompressibility is assumed for both constituents,
i. e. ραR =const. The effective (true) weight of the fluid is denoted by γFR, TS

E represents
the Cauchy extra stress of the solid phase given by a constitute equation, and b is the
body force. An elaborate interpretation of the equations can be found in references [3, 4].
The boundary of the domain is decomposed into Dirichlet and Neumann parts. Due to
the superimposed constituents of the solid and fluid phases in the mixture the boundaries
of both constituents are described separately as follows

uS(x, t) = ũS for x ∈ ΓS
D × I,

p(x, t) = p̃ for x ∈ ΓF
D × I,

(TS
E − p I)(x, t) · n = ¯̄t for x ∈ ΓS

N × I,
wF (x, t) · n = ¯̄w for x ∈ ΓF

N × I,

(5)

where ∂Ω = ΓS
D

⋃
ΓS

N = ΓF
D

⋃
ΓF

N with ΓS
D

⋂
ΓS

N = ∅ and ΓF
D

⋂
ΓF

N = ∅. The initial
conditions are prescribed for both constituents as uS,0, vS,0, wF,0 and p0 in a consistent
way.

2 SPACE-TIME FORMULATION

In this section we introduce the time-discontinuous Galerkin formulation in detail. The
space-time domain (Q = Ω×I) is intuitively constructed by adding an time axis which is
orthogonal to the spatial domain, such that a spatially one-dimensional problem results
in two-dimensional elements, and a two-dimensional problem results in three-dimensional
elements, etc. Let t0 <, · · · , < tn < tn+1 <, · · · , < T be a sequence of discrete time level
tn, consequently we obtain the time interval In = (tn, tn+1]. Hereby we introduce the
definition of a space-time slab Qn = In × Ω. The space-time elements are constructed
on every such slab. The space-time elements for one/two dimensional spatial domains
are shown exemplarily in form of linear elements in Fig. 1. The approximate solutions
are solved sequentially on every slab, which leads to a method analog to the general time
difference method where the solution on every time step tn is solved consecutively (method
of lines). The weak forms of the considered problem are obtained by multiplying certain
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Figure 1: Space-time elements for one/two dimensional space

test functions to the governing equations and then integrating over the space-time slab
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Qn. Owning to the virtue of partial integration in time, we obtain excluded values on the
border of time interval, as briefly shown below

∫

Qn

F′ · δF dvdt = −

∫

Qn

F · δF′ dvdt +

∫

Ω

F̄ · δF|tn+1

tn
︸ ︷︷ ︸

= F̄n+1·δF− F̄n·δF

dv (6)

in which F could be any concerned quantity in the weak form (e. g. uS, vS, wF or p) and
δF represents its corresponding test function. The subscript n or n + 1 represents the
time level tn or tn+1, respectively. It is obvious that in general (continuous case) F̄ = Fn.
However, under the discontinuous assumption inconsistent values before and after tn are
allowed. In order to deal with such inconsistent values, we introduce here the numerical
flux concerning the upwind treatment on the interface as

F̄(x, tn) =

{
F0(x), if tn = t0,
F−

n (x), otherwise
, where F−

n (x) = lim
ε→0+

F(x, tn − ε). (7)

where F0 is the respective initial value (e. g. uS,0, vS,0 or wF,0). Such concept of numerical
flux stems from the finite volume methods and has become an important member in the
discontinuous Galerkin family in the recent 10 years. One simple reason for accepting
such assumption in a time-dependent problem is that the value at the certain time level
tn must equal the value of its immediate past tn − ε (ε is a infinite small positive value).
Therefore, it is natural to start the procedure with F̄ = F0, which is the initial value at
t0. An survey of the flux like treatment can be found in [1] and the literature therein.
The governing weak form on the time slab Qn is given here for the balance of momentum
of the mixture eq. (2) exemplarily

∫

Qn

{

− (nSρSR + nF ρFR)vS · δv′
S − ρFwF · δv′

S + (TS
E − p I) : grad δvS

}

dv dt

+

∫

Ω

{

(nSρSR + nF ρFR)(v−
S,n+1 − v̄S,n) · δvS + nFRρF (w−

F,n+1 − w̄F,n) · δvS

}

dv

=

∫

ΓS

N
×In

{(

(TS
E − p I) · n

)

· δvS

}

da dt +

∫

Qn

{

(nSρSR + nF ρFR)b · δvS

}

dv dt.

(8)

The weak forms of the remaining set of equations (1,3-4) can be calculated similarly.

3 NUMERICAL EXAMPLES

We consider here a one-dimensional consolidation problem with a constant external
load on the drained surface at x = L. The geometry and the material parameters are
shown in Fig. 2. For the spatial discretization we choose biquadratic ansatz functions
for uS and vS, and bilinear ansatz functions for wF and p. The chosen polynomials
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in the time domain are standard linear Lagrange polynomials. We depicted the curves
of the seepage velocity wF (xP ) at the point P obtained by the TDG and the implicit
Euler method in Fig. 2. It is observed, that the numerical dissipation spoiled the results
dramatically in the implicit Euler method if we apply a large time step (∆t = 1 s). The
traveling wave was completely damped out, and can be obtained within the implicit Euler

method only for much smaller time steps. The TDG shows a much favorable property,
even with a coarse discretization (∆t = 1 s), the traveling wave is not damped out. Under
the coarse discretization, the TDG shows a visible jump property at the end of each time
step, which is well cured with refined time step length (∆t = 0.1 s). Although such
jumps are unphysical, they render a more accurate numerical solution in practical finite
element calculations. Furthermore, adaptive space-time strategies could be developed,
e. g. a simple gradient-based error indicator could be based on the jumps in analogy to
the Z2 error indicator.
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Figure 2: Seepage velocity (wF ) at point P
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