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Summary. We present a Generalized Finite Element Method for the analysis of grain-

boundary sliding in polycrystals. Grain boundaries are represented by means of elements

with embedded displacement discontinuities through the partition of unity property of finite-

element shape functions. Consequently, the finite-element mesh does not need to conform

to grain boundaries.

1 INTRODUCTION

In many polycrystalline materials, grain boundary sliding is one of the main mechanisms
behind anelastic deformation. In this contribution, we consider novel developments in the
field of Generalized Finite Element Methods [2, 5] and present a model for the analysis
of polycrystals in which grain boundaries are represented by means of elements with
embedded displacement discontinuities. A cohesive constitutive law for grain boundary
sliding is applied across grain boundaries which are described using the GFEM formulation
presented in Section 2. Simple applications illustrate the potential of the proposed model.
More specifically, the effect of grain boundary sliding [3] and the influence of grain size,
shape and distribution on anelasticity of polycrystals are assessed.

We also discuss an extension of the model for the description of grain refinement, a
phenomenon which is believed to be a key ingredient in the development of superplastic
flow in some coarse-grained materials.

The proposed GFEM approximation for polycrystals can also be used for branched
and intersecting cohesive cracks in two or three dimensions. We demonstrate that the
two-dimensional case of our approach produces the same approximation spaces as tech-
niques making use of the eXtended Finite Element Method [1, 4]. However, the choice of
enrichment functions is simplified, thus making it an appealing alternative to the XFEM.
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Figure 1: Unit cell for a polycrystal

2 GFEM FOR POLYCRYSTALS–MAIN IDEAS

The model relies on novel developments in the field of GFEM. The displacement field
in a polycrystal comprising NG grains (see Figure 1) is decomposed according to

u = û +

NG
∑

α=1

Hαũα, (1)

where the field ũα is an enhancement, related to grain Gα, to the standard displacement
field û and

Hα(x) =

{

1 if x ∈ Gα

0 otherwise.
(2)

The resulting field equations are discretized by using the finite-element method.
The analysis of the polycrystal unit cell depicted in Figure 1 is accomplished by defining

a structured background finite-element mesh on which the polycrystal topology is super-
imposed as schematically depicted in Figure 2. It is worth noting that the analysis of the
polycrystalline region depicted in Figure 1 can be performed without recourse to mesh
generators (see e.g. [6]). This is specially important for three-dimensional models since
the grain topology, in this case, is in general difficult to mesh. However, as in standard
finite-element methods, the quality of the GFEM approximation depends on the level of
refinement of the background mesh. Alternatively, the GFEM approximation can also
be improved through p-type enrichment of the approximation spaces defined on a course
background mesh.
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Figure 2: GFEM approximation of a polycrystal unit cell
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