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Summary. The new numerico-analytical method for the integration static and dynamic
problems of elastoplastic equations suggested. The method is based on the splitting of
constitutive equations for the models independent on the time scale as well as for the strain
rate dependent models. The proposed method has significant computational advantages as
compared with the standard iteration methods.

1 INTRODUCTION

The distinctive feature of the constitutive equations of the plasticity theory is that
in addition to differential relations, these equations involve also a finite relation that
constrains the stress tensor invariants. Owing to this, various mathematical formulations
are allowed for the constitutive relations of the model. The most widespread statement
involves differentiation of the plasticity conditions to reduce the problem to a system of
differential equations. A drawback of this approach is that the artificial differentiation
leads to an increase in the order of the system of constitutive equations and substantially
complicates solution.

We will show that there is another approach which is using decomposition of the
constitutive equations, this allows one to simplify the solution of the problem.

The idea of the decomposition method is simple and well known. An additive opera-
tor A(u) can be replaced by a multiplicative operator on a small time interval ∆t.

∂u

∂t
= A(u) = (A1 + A2 + · · ·+ An) u,

un+1(t + ∆t) =
[
E + (A1 + A2 + · · ·+ An)∆t

]
un(t),

(1)

where An are matrix differential operators with respect to the spatial variables, E is the
identity operator, and u is a vector. The solution of the difference equation of (1) can be
represented in the form of a multiplicative operator

un+1(t+∆t) = (E+A1∆t)(E+A2∆t) · · · (E+An∆t)un(t) = (E+A∆t)un(t)+O(∆t2). (2)

This allows one to reduce the numerical integration of systems of differential equations of
the form of (1) to the successive solution of problems for each of the operators An, with
the initial conditions being obtained as the solution of the previous problem for An−1.
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2 SPLITTING OF ELASTOPLASTIC EQUATIONS

The system of equations governing the behavior of a hypoelastoplastic medium subject
to finite strains involves the conservation laws for mass, momentum, and energy. These
equations should be supplemented with the constitutive equations of the hypoelastoplastic
medium. In the Eulerian variables, these equations have the form

Dσij

Dt
=

dσij

dt
+ Ωikσkj + Ωkiσjk = Dijkl(ε̇kl − ε̇p

kl), (3)

where Dσij/Dt is the Jaumann derivative, Dijkl is the tensor of elastic moduli, and
Ωij = 1

2
(vi,j − vj,i) is the rotation rate tensor. The plasticity condition in general form is

expressed by a finite relation between the invariants of the stress Ji, strain Ei and strain
rate Ėi tensors and the internal parameters of the medium χk

F (Ji, Ei, Ėi, χk) = 0, (i = 1, 2, 3, k = 1, 2, · · · , n) (4)

The plastic strain rate tensor is defined by the associated flow law

ε̇p
ij = Λ̇

∂F

∂σij

, (5)

χ̇k = fk(Ji, χk). (6)

The dot stands for the material derivative with respect to time. Relation (3) follows from
the additivity of strains combined with Hooke’s law and provides the equation for stresses.

The decomposition general scheme looks as follows. To be decomposed is only Eq. (3).
The predictor is taken at ε̇p

ij = 0, which corresponds to the elastic material. In this
case, for each step ∆t, one should solve the elastic problem

ρ
∂vi

∂t
= σij,j,

∂σij

∂t
+ Ωikσkj + Ωkiσjk =

1

2
Dijkl(vi,j + vj,i), (7)

subjected to the initial conditions obtained at the previous step for the complete problem.
The corrector is taken at ε̇ij = 0 in Eq. (3). In this case, Eqs. (3) and (5) lead to

the stress relaxation equation

dσij

dt
= −dΛ

dt
Dijkl

∂F

∂σkl

. (8)

For the elastoplastic medium, the relaxation is completed before the elastic unloading
has occurred. For the elastoviscoplastic medium, the relaxation is completed before the
steady-state plasticity condition has held.

F (Ii, İi, χi)|İi=0 = 0, (9)
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For the classical elastoplastic medium, the properties of which are independent of
the change in the time scale, one can eliminate the time t from Eqs. (8)

dσij

dΛ
= −Dijkl

∂F

∂σkl

. (10)

This system of differential equations on small time interval ∆t can be always linearized
and solved in close analytical form with accuracy O(∆t), the same as the main decompo-
sition procedure has. Analytical solution significantly simplifies the solution.

Solve the equations of (10) and (6) subjected to the initial conditions Λ = Λ0, σij = σe
ij,

and χi = χe
i (resulting from the solution of the elastic problem) we fined functions

σij = σij(Λ, σe
ij, χ

e
i ), χij = χij(Λ, σe

ij, χ
e
i ). (11)

Substitute (11) into the plasticity condition of (4) to obtain the equation for Λ

F
[
Ii(Λ), χi(Λ), Je

i , χ
e
i

]
= 0, (12)

By solving this equation and substituting the resulting Λ into (11) we obtain the final
solution of the problem.

For the isotropic hardening Mises plasticity

J2 =

(
1

2
sijsij

)1/2

= k0 + 2µ1χ
β. (13)

we obtain the power-law nonlinear equation to determine the correction coefficient x

Je
2x− k0 + 2µ

[
ξe +

(Je
2)

α

2αµ
(1− xα)

]β

= 0, x = e−2µ(Λ−Λ0). (14)

For the linear hardening law, β = 1, α = 1, the solution is obtained in closed form

x =

[
k0 +

µ1

µ
(Je

2 + 2µ1χ
e)

](
1 +

µ1

µ

)−1

(Je
2)
−1. (15)

For the case of perfect plasticity, µ1 = 0, we have x = k0/J
e
2 , sn+1

ij = se
ijk0/J

e
2 . This

is the familiar Wilkins correction rule that applies only to perfectly plastic media. The
formal extension of this rule to the hardening medium by setting x = (k0 + 2µ1χ

e)/Je
2

leads to an erroneous result.
Another widely used plasticity theory is that due to Prager and Drucker.

F (J1, J2, k) = J2 + aJ1 − k = 0, (0 < a < 1) (16)

The Eq. (12) gives the following expression for the correction coefficient x

Je
2x + a

[
Je

1 −
9Ka

µ
Je

2(1− x)

]
− k0 = 0, J1 = Je

1 −
9Ka

µ
Je

2(1− x) (17)
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The correction coefficient involves an additional term due to the influence of the first
invariant. One can see that the Wilkins correction rule does not apply in this case.

For the elastoviscoplastic medium, the plasticity condition is of differential type.

F1(σ
e
ij, χ

e
i , Λ, Λ̇) = 0. (18)

Solve this relation for Λ̇ to obtain the equation

τ
dΛ

dt
= ϕ

[
F

(
Ji(Λ), χi(Λ)

)]
= ϕ(F ), (19)

where τ is the relaxation time and ϕ(0) = 0. The right-hand side of Eq. (19) involves the
function F = F

(
Ji(Λ), χi(Λ)

)
that corresponds to the equilibrium plastic state for τ = 0

of Eq. (12).
This decomposition scheme is stable, if the predictor scheme for the solution of the

elastic problem is stable and there exist solutions of Eqs. (12) and (19).
Let consider the viscoplasticity condition of Mises type (13)

τĖp
2 = ϕ [F (Ji, χi)− k0] , ϕ(0) = 0. (20)

Than differential Eq. (19) will be in the following form

dx

dt
= − 2µ

τJe
2

{
Je

2x− k0 + 2µ1

[
χe +

Je
2

2αµ
(1− xα)

]β
}1/n

. (21)

For the perfect elastoviscoplastic medium we obtain

∆t

τ
= − 1

2µ

∫ x

1

(
x− k0

Je
2

)−1

dx, x− k0

Je
2

=

(
1− k0

Je
2

)
exp

(
−∆t

τ
· 2µ

Je
2

)
,

x → xp
∗ =

k0

Je
2

when τ → 0.

This implies that the solution converges to the equilibrium one for (∆t/τ)(2µ/Je
2) � 1

and, hence, the difference scheme is absolutely stable at the corrector stage.

3 CONCLUSIONS

The proposed method has significant computational advantages as compared with the
standard iteration methods. At each integration step, this method involves only one solu-
tion of an elasticity problem and the solution of one equation for the correction coefficients
at the corrector stage. In contrast to this, the traditional methods require solving a sys-
tem of n non-linear constitutive equations (n ≥ 6) at each point of the body in the case
of explicit scheme. For the implicit schemes the advantage is much greater.
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