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1 INTRODUCTION

This contribution deals with the simulation of the behavior of a grain structure of
a polycrystalline metal. The behavior of such a grain structure depends on, e.g., grain
geometry, volume fraction of different phases, and grain size. A way of including the grain
size dependence in the modelling of the grain structure will be presented. Alternative
formulations can be found in, e.g., references1,2.

Within the framework of continuum thermodynamics and finite strains, we formulate
a model for crystal (visco)plasticity, crystal damage and gradient hardening. The crys-
tal damage is based on the concept of a fictitious (undamaged) configuration, and it is
assumed to be driven by inelastic slip in each slip system. Furthermore, the gradient
hardening gives a contribution for each slip system which is added to the well established
local hardening.

In order to solve the arising coupled field equations (for the displacements and the
hardening of the slip systems) the dual mixed FE algorithm proposed in3 is applied. The
contribution is concluded by a numerical study how model parameters (such as grain size,
damage rate) will influence the stress strain response of a 2D model of a polycrystal.

2 CRYSTAL PLASTICITY MODEL

In order to include a gradient dependence of the hardening variable kα associated with
the slip direction s̄α, we propose the following free energy (per unit undeformed volume):

Ψ(C̄, b̄d, kα, s̄α · ∇kα) = Ψe(C̄, b̄d) +
∑

α

[

1

2
Hlk

2
α +

1

2
Hg l2α [s̄α · ∇kα]2

]

(1)

where C̄ is the elastic Cauchy-Green tensor and bd is the integrity tensor that models the
crystal damage. For details concerning the crystal damage we refer to Ekh et al.4.
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The plastic part of the free energy can now be used to define (by following the arguments
put forward by Svedberg & Runesson5) the local hardening stress κα,l and the gradient
hardening stress κα,g:

κα,l = −
∂Ψ

∂kα

= −Hl kα (2)

κα,g = ∇ ·
∂Ψ

∂∇kα

= Hg l2α
∂2kα

∂s̄2
α

(3)

Hence, the total hardening κα in each slip system consists of a local and a gradient part:

κα = κα,l + κα,g = −Hl kα + Hg l2α
∂2kα

∂s̄2
α

(4)

In summary, we assume the following evolution equations (of the associative type):

l̄p = Ḟ p · fp =
∑

α

λ̇α

∂Φα

∂M̄
t

=
∑

α

λ̇α [s̄α ⊗ m̄α] (5)

k̇α = λ̇α

∂Φ

∂κα

= −λ̇α (6)

where, in a viscoplastic format, λ̇α can be expressed as

λ̇α =
1

t∗

[

〈Φα〉

C0

]m

A rate-independent solution is obtained if t∗ → 0. In the above expression the yield
function Φα is defined as:

Φα =
M̄

t
: [s̄α ⊗ m̄α]

bα

− κα − σy,α (7)

where M̄
t

is the elastic Mandel stress and bα is the integrity on the crystal slip system
obtained from bd.

3 NUMERICAL EXAMPLES

In the numerical examples we have assumed the following boundary conditions: at
interior grain boundaries: k̇α = 0 (Ã kα = 0), while we assume that κα,Γ0

= 0 at the
external boundaries of the body. The latter condition means that either ∂kα/∂s̄α = 0 or
N · s̄α = 0. Furthermore, the results shown below are for the case of rate-independence
(i.e., t∗ → 0). Henceforth, we consider a square Representative Volume Element (RVE).
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For simplicity, we assume plane strain for the RVE and that all the grains have only one
slip system (the same direction for all the grains in the RVE). This direction is assumed
to be 10o against the horizontal axis. The lower boundary of the RVE is assumed to be
fixed in both the vertical and horizontal directions while the upper boundary is subjected
to the displacement u in the horizontal direction.

The macroscopic nominal stress F/A vs the macroscopic strain u/L is shown in figure
1 for two values of L.
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Figure 1: Size dependence of hardening

Figure 2 shows how the plastic slip is distributed at u/L = 0.02 for L = 6 mm.

4 CONCLUSIONS
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Figure 2: Distribution of plastic strain λα for L = 6 mm
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