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1 INTRODUCTION 
The presence of water significantly influences the mechanical response of porous materials 

due to the activation of molecular forces and surface energy phenomena1,2. Among other 
effects, moisture causes a decrease in stiffness and a reduction of the tensile strength of the 
material. Loading cycles are characterized by stiffness degradation and the occurrence of 
permanent deformations after unloading. All these phenomena can be adequately described by 
a combined damage-plasticity model.  

In the present paper the constitutive equation of a combined continuum damage-plasticity 
model3,4 are adapted to be consistent with embedded strong discontinuities and to account for 
the influence of moisture. The model is implemented in a fully coupled discrete crack model5. 
The model is illustrated by means of a numerical example of a 3 point bending test.  

2 KINEMATICS OF STRONG DISCONTINUITIES 

The displacement field of a body crossed by m non-intersecting discontinuities is given by6
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The strain field of a body crossed by a discontinuity can be found by taking the symmetric 

gradient of the displacement field: 
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where  is the normal to the iin th discontinuity and 
i

δΓ  is the Dirac delta distribution. 
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3 DISCRETE DAMAGE-PLASTICITY MODEL 
The combined damage-plasticity formulated by Simo & Ju 3,4 uses the following 

constitutive equation  
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where σ  is the stress tensor,  is the damage variable, d dκ  is a history parameter,  is the 
elastic constitutive tensor,  is the total strain tensor and  is the plastic strain tensor. The 
model should be consistent with an incorporated discontinuity. Inserting the kinematical 
description of the strain field (Eq. 2) in the constitutive equation (Eq. 3) yields 
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Assuming that the plastic strain field can be decomposed in a similar form as the total 
strain field and allowing only plasticity at the discontinuity, yields 
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The stress field must remain bounded and therefore the Dirac-delta distribution must 
cancel. Following Oliver7, we do this by making the internal damage variable unbounded.  
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Substituting Eq. 6 into Eq. 3, assuming an elastic behavior in the continuum ( 0dκ = ) and 
taking into account that the value of 

i
δΓ  is zero everywhere, except at the ith discontinuity, the 

stress field in a point on discontinuity iΓ  becomes 
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Multiplying Eq. 7 by the normal to the discontinuity and rearranging gives an expression 
for the traction forces  
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with iω  the degenerated damage variable and  the elastic acoustic tensor, both related 
to the i

e
iQ

th discontinuity. Eq. 8 shows that the total separation at the ith discontinuity is split into 
a recoverable damage part and an irrecoverable plastic part.  
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4 IMPLEMENTATION AND NUMERICAL EXAMPLE 

4.1 Crack initiation and propagation 
A crack is initiates or propagates if the plasticity yield surface, expressed in the principal 

stress space, is violated. For the case of mode I loading, a Rankine failure surface is often 
adopted (Eq. 9) 

( ) 0p
I tf f Sσ= − ≤  (9)

Where Iσ  is the first principal stress and tf  is the tensile strength of the material. Based 
on the findings of Carmeliet and Van den Abeele8, the dependency of tf  on the degree of 
saturation of the material can be expressed as  
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with  the Young’s modulus at dry state, 0SE = 1SE =  the Young’s modulus at vacuum 
saturation state and crε  the critical strain level in the material.  For the Rankine surface 
expressed in Eq. 9, the discontinuity will grow perpendicular to the maximal principal stress 
direction. Crack path continuity is imposed. For more complex models, the direction of crack 
growth should be based on the non-local stress field at the crack tip9 . 

4.2 Behavior at the discontinuity 
After initiation of the discontinuity, the cohesive zone behavior is stated in terms of 

tractions and separations. The magnitude of the traction forces (Eq. 8) is obtained in two 
steps. First, the plasticity problem is solved in the effective stress space, then the damage 
variable is updated and the effective stresses are mapped back to the homogenized stress 
space. 

If plastic deformations are assumed to occur in the undamaged material bonds, the plastic 
yield function can be expressed in terms of tractions in the effective stress space10  

ˆ 0p p
nf T hκ= − ≤  (11)

Where  is the effective normal traction force,  is the hardening modulus of the material 
and  is the internal plastic variable. In a first step the separation increment is considered 
fully elastic. Trial tractions are calculated and used to evaluate the plastic yield surface. If 

 the yield function is not violated, and the trial tractions correspond to the effective 
tractions. When this is not the case, the trail tractions must be corrected such that the final 
stress state is situated on the yield surface 

n̂T h
pκ

0pf <

0pf = . This condition determines the value for the 
plastic multiplier. 

The damage variable can be updated (Eq. 8) and the stresses can be mapped onto the actual 
stress space. The model is illustrated for the case of a 3 point bending test subjected to 
loading, unloading and reloading (Fig. 1). The effect of moisture is clearly visible.  
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Figure 1: Load displacement diagram for a dry and a fully saturated beam subjected to a 3-point bending test 

5 CONCLUSIONS 
A combined damage plasticity model for mode I loading has been derived from a 

continuum model. The model has been adapted to take into account effects of moisture on the 
mechanical behaviour and has been implemented into a fully coupled discrete crack model. 
The derivations can be easily extended to more complex models.  
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