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Summary. A general procedure is presented to evaluate the limit behaviour in the 2D 
elastoplastic beam element under static forces and thermal loading. We assume the Navier 
hypothesis for beams and sudden and concentrated plasticity in the beam-ends attending the 
yield function Y based on the von Mises criterion. Results illustrate that in a beam with plastic 
behaviour the fixed-end forces depend not only on the applied forces and temperature 
distribution but also on the forces and temperatures that caused the plasticity in the 
considered end of the beam and that coupling between forces and displacements appears in 
the cross-section in plastic state. 
 
 

1 INTRODUCTION 
We present an analytical formulation based in the finite element method for the nonlinear 

structural analysis of frames incorporating thermal effects. It is well known that the usual 
numerical way for the determination of the plastic collapse load of framed structures is the use 
of one-dimensional finite element models (2D beam element) together with the plastic hinge 
concept and an incremental procedure. The approach we present takes into account both 
material and geometric nonlinearities from an analytical point of view, using the extended 
plastic cross section concept (that includes the plastic hinge concept) and needing not only 
incremental but also iterative algorithms (plastic return). We try to apply this approach to the 
analysis of 2D frames under static and thermal loading. The main assumptions made in the 
modelling include the Navier hypothesis for beams, the von Mises yield criterion together 
with associated flow rule for plastic behaviour and linear temperature profiles in any cross 
section for thermal loading. We also consider that steel loses strength and stiffness for rising 
temperatures and we use the expressions included in EC3-1.2 (CEC 1995). The load is 
applied in a quasi-static way using sequential load curves and buckling effects and reversal 
loading are neglected. 

The model represents the steel members by two-noded one-dimensional line elements 
(beams) with thermal loading (point or distributed inter-element loading is also possible using 
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the same strategy) (figure 1). The plasticity is supposed to be concentrated1 only at the nodes 
and once a node is in plastic state the combination of the axial force N, shear force V and 
bending moment M satisfies the yielding condition2 Y(N,V,M,T) at any temperature T. The 
tangent stiffness matrix is required for the non linear solution procedure. In each increment, 
for increasing temperature or increasing load, it is necessary a return iterative algorithm3 at 
any plastic node in order to assure the plastic requirements.  
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Figure 1: 2D Beam finite element with the possibility of plastic behavior in its ends 

2 YIELD FUNCTION 
As it is known1,2,6,7, the yield function Y is the relationship between N, V and M that leads 

the considered section to be in plastic state for any temperature T. Bearing in mind that some 
material properties depends on the temperature (we assume the expression of EC3) we 
present5,7 the resulting yield function for 3 different temperatures in figure 2,a,b,c and for any 
temperature in figure 2,d (neglecting shear force V). NP, VP and MP are, as usual, the fully 
plastic tensile force, shear force and bending moment, respectively. Figure 2,a shows6,7 the Y 
function at reference temperature whereas 2,b and 2,c shows furthermore Y at 300 and 600 ºC  
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Figure 2. Effects of the temperature on the yield function. 



Antolín L. Ibán and José M. García-Terán. 

 3

3 FINITE ELEMENT FORMULATION 
    We assume the standard FEM formulation for non-linear structural analysis based on the 
tangent stiffness matrix K. Under an updated lagrangian approach and bearing in mind that 
the total or thermo-elastoplastic displacement can be decomposed2,7 into its thermo-elastic and 
themo-plastic components, the incremental beam forces are related to incremental 
displacements and temperatures by the equation 
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(1)

where Y is the yield function and F is the vector of beam forces (N, V and M in both nodes). 
This equation shows that for any element the beam forces can be obtained by adding 3 parts: 
the forces due to the thermo-elastoplastic displacements Tepu , the ones due to the thermo-
elastic displacements Teu  and another part due only to thermo-plasticity. From this governing 
equation (1) and assembly for several elements in the usual way it is possible to obtain the 
incremental governing equation for any frame. Nevertheless it is necessary to know the effect 
of the thermal loading in terms of its equivalent effect at the beam ends. 

4 FIXED END FORCES 
For the determination of the forces at the beam-ends equivalent to the considered thermal 

loading we use the same strategy that Ibán7 for interelemental distributed forces. The beam is 
divided in 3 elements (figure 3) and ∆T1 and ∆T2 is acting only in the elastic central one (so it 
is easy to obtain its equivalent forces) whereas the other two elements may include the plastic 
behavior. After solving this virtual frame for L1 and L3=0 the solution can be found. It can be 
shown7 that the solution depends not only on ∆T1 and ∆T2 (and of course on E, A and IZ) but 
also, for beams with some plastic node, on the N0, V0 and M0 forces that led that node to 
plasticity. 
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Figure 3. Virtual discretization. 
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5 EXAMPLE 
We suppose that in a thermal loaded frame there is a certain beam in which axial force and 

bending moment at, for example, its left-end have followed the path shown in figure 4 for a 
monotonic rising temperature. For simplicity we suppose that yield function depends only on M, N 
and T. N and M reach, at point 1, the corresponding yield curve for the current temperature T1 so 
that plastic behavior begins in that end. After and increment of temperature (T2) there is a change in 
the path (point 2, evaluated according (1) using tangent matrix). From this point 2 it is necessary the 
iterative return algorithm in order to return this point to its corresponding yield curve T2 (point 2’)  
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Figure 4. Loading path. 

6 CONCLUSIONS 
    This work presents a numerical formulation of 2D beam finite element with plasticity and 
with properties depending on the temperature and some numerical results for a particular case. 
This formulation is similar to the one for the thermoelastoplastic problem in continuum 
mechanics and hence needs for tangent stiffness matrix, yield function, plastic return, etc. but 
not expressed on stresses but on beam forces (N, V and M). The resulting method is more 
rigorous that the classical plastic methods for frames based in plastic hinges and can describe 
with better accuracy the behavior of frames under forces and thermal loading. 
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