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Summary. Here we present a dual kinematic formulation of limit analysis as a second-

order cone programming problem, employing linear strain finite elements with a continuous

displacement field. The result is a powerful tool for obtaining rigorous and tight upper

bounds for very large discretized structures.

1 INTRODUCTION

In this paper we describe an efficient approach to upper bound limit analysis of cohesive-
frictional continua, using a finite element discretization in conjunction with second-order
cone programming (SOCP). We also introduce the use of linear strain elements, focusing
here on 6-node triangles in plane strain, though a directly analogous extension to 10-node
tetrahedra in 3D is straightforward. If the vertices of such elements are taken as the flow
rule points, it can be proved1 that the solutions obtained are strict upper bounds on the
exact collapse load. Two numerical examples using unstructured meshes show that the
linear strain elements give better results than constant strain elements combined with
kinematically admissible discontinuities (until now considered to be the only practical
choice for a rigorous upper bound analysis using finite elements). The examples also
demonstrate that, as in shakedown analysis2, the use of SOCP is highly advantageous,
allowing very large problems to be solved in 1-2 minutes on a desktop PC. The obvious
limitation of this approach is that it can only be applied to quadratic cone-shaped yield
functions (e.g. Mohr-Coulomb in plane strain, and Drucker-Prager).

2 FORMULATION OF OPTIMIZATION PROBLEM

A standard SOCP problem has the form

min cTx (1)

s.t. Ax = b

xi ∈ Ci ∀i ∈ {1, . . . , N}

xT =
[

xT
1 . . . xT

N

]
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where A ∈ ℜm×n, b ∈ ℜm, c,x ∈ ℜn and the sets Ci are second-order (or quadratic)
cones of the form {x ∈ ℜd : ‖x2:d‖ ≤ x1, x1 ≥ 0}. For convenience we will employ the
notation (z,x) ∈ C as shorthand for ‖x‖ ≤ z, z ≥ 0.

Consider a plane strain structure made of rigid–perfectly plastic material obeying the
Mohr-Coulomb yield criterion (cohesion c, friction angle φ). The structure is discretized
into 6-node triangular finite elements with straight sides. For these elements it can be
shown that if the (associated) flow rule is enforced at the three vertices, it will automati-
cally be satisfied throughout the whole element1. Upon applying the kinematic theorem,
the arising SOCP optimization problem in the dual form reads

max β (2)

s.t.
NP
∑

i=1

(Ae
i/3)Bm,iσm,i +

NP
∑

i=1

(Ae
i/3)Bd,is

red
i − βq = q0

yi + σm,i sin φ = c cosφ ∀i ∈ {1, . . . , NP}

(yi, s
red
i ) ∈ Ci ∀i ∈ {1, . . . , NP}

where σm,i and sred
i =

[

sxx,i sxy,i

]T
are the mean and deviatoric stresses at the ith flow

rule point, Ae
i is the area of the element to which the ith flow rule point belongs, q

and q0 are load vectors, and the yi are auxiliary variables. The matrices Bm,i and Bd,i

incorporate the mean and deviatoric strain–displacement relations, according to

∂u

∂x
+

∂v

∂y
= Bm,iu and

[

∂u

∂x
−

∂v

∂y

∂u

∂y
+

∂v

∂x

]T

= Bd,iu at (x, y) = (xi, yi)

3 NUMERICAL EXAMPLES

The analyses below were performed on a Dell PC (2.66 GHz CPU, 2 GB RAM) in the
Windows XP environment, using the interior-point SOCP algorithm implemented in the
MOSEK software package3. The meshes were produced using GiD, and in each case were
used to compare the new 6-node linear strain triangles with the more usual configuration
of 3-node constant strain triangles separated by discontinuities. It is noteworthy that, for
a given mesh, the optimization problems obtained using the two different element types
are of similar size, and thus the CPU times are broadly comparable as well. The quoted
CPU times do not include the time spent reordering variables and rows during presolve
(up to 20 s and 35 s for runs with the 6-node and 3-node elements respectively).

3.1 Rigid strip footing

The first example concerns the bearing capacity of a symmetrically loaded, rigid strip
footing on purely frictional soil, in the absence of surcharge. The single mesh employed
was unstructured – though very fine close to the footing edge – and consisted of 31481
elements. Analyses were performed for friction angles ranging from 10◦ to 40◦. Table 1
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gives the results, expressed in terms of the usual dimensionless factor Nγ = 2qu/γB, and
compares them with the exact values (coincident lower and upper bounds) that can be
obtained using other numerical methods4. With the 6-node elements, the exact collapse
load is overestimated by a maximum of 1.00% for a smooth footing and 2.62% for a rough
footing (both when φ = 40◦). The upper bounds for all four friction angles are tighter
than those of Hjiaj et al.5, who employed 3-node elements, but with meshes that appear
to have been specially tailored to provide favourably oriented discontinuities. If no such
efforts are made to structure the mesh, Table 1 shows that the 6-node elements provide
significantly better results, particularly for larger values of φ.

6-node elements 3-node elements with discontinuities
smooth rough smooth rough

φ (◦)
Nγ CPU(s) Nγ CPU(s) Nγ CPU(s) Nγ CPU(s)

(error%) (iter) (error%) (iter) (error%) (iter) (error%) (iter)

10
0.2820 77 0.4399 82 0.2853 66 0.4470 55
(0.41) (22) (1.55) (24) (1.56) (29) (3.20) (26)

20
1.586 79 2.872 81 1.617 60 2.955 56
(0.44) (23) (1.16) (24) (2.40) (28) (4.09) (27)

30
7.700 78 14.96 77 8.160 62 15.98 69
(0.61) (23) (1.37) (23) (6.63) (29) (8.34) (33)

40
43.62 81 87.81 94 48.22 75 104.1 86
(1.00) (24) (2.62) (26) (11.66) (35) (21.70) (41)

Table 1: Upper bounds on Nγ for various friction angles, for smooth and rough footings

3.2 Plane strain block with asymmetric holes

For the second example, three different meshes (814, 4446, 19714 elements) were gen-
erated for the structure shown in Figure 1. This problem has previously been analysed
by Zouain et al.6 using mixed elements (for c = 1 and φ = 0), and by the authors7 using
lower bound stress elements (for c = 1 and φ = 0, 30◦). The results of the present analyses
are given in Table 2, and they confirm the advantage of using the 6-node elements: much
tighter upper bounds at a cost that is only slightly greater. In the absence of an exact

solution, the ‘error’ entries in Table 2 have been calculated as pU−pL

pU+pL where pL = 1.809c

and pL = 1.056c are strict lower bounds for φ = 0 and φ = 30◦ respectively7. Bracketing
of the exact collapse load is very satisfactory: ±0.44% for φ = 0 and ±0.30% for φ = 30◦.
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Figure 1: Plane strain block with asymmetric holes (after Zouain et al.6)

6-node elements 3-node elements with discontinuities
φ = 0 φ = 30◦ φ = 0 φ = 30◦

NE
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