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Summary. In order to realistically evaluate the behaviour of a tunnel in soils with creep,
including problems such as long-term load transfer to the final support, a rate-dependent
material model is inescapable. In this work, an elastoplastic-viscoplastic bounding surface
material model, following the formulation of Kaliakin and Dafalias, is applied to the
modelling of time effects in the construction and operating phases of a tunnel is saturated
cohesive soils.

1 INTRODUCTION

The motivation for this work is the question of time evolution of load in the final support
of a tunnel in a saturated cohesive soil due to creep. In order to achieve this, a soil model
capable of describing rate-dependent behaviour of cohesive soils is required. The
elastoplastic-viscoplastic bounding surface model proposed by Kaliakin and Dafalias'*. This
model enhances the simplified version® of the model of Dafalias and Herrmann® by adding a
viscoplastic mechanism.

2 MODEL DESCRIPTION

The bounding surface has an elliptic shape in the invariant (I,J) space. It is defined by the
following expression’

F(5,1,)=F(1,7) =(T—10)[T+ R£210J+(R—1)2 (%) =0, (1.1)

and represented in Fig. 1. The stress point ¢ must be inside or on the bounding surface and
always has an image on it, ¢ defined by a radial projection from a center on the isotropic
axis. Iy defines the size of the bounding surface and is the only internal variable in this model
being responsible for isotropic hardening. The material constant R allows the flattening of the
ellipse without moving the Critical State Line. N defines the inclination of the Critical State
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Line and may vary with invariant o (Lode angle) in which case 2 constants are needed for its
specification (N, for triaxial compression and N, for triaxial extension).
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Figure 1 : Bounding surface model.

The stress invariants used are

I=tro, J=+/s:s/2 and a:sin_1[3x/§dets/(2J3)]/3 , (1.2)
with s =0 —1/31 being the deviatoric stress. The projection operator is defined by
I=bl+(1-b)CI,, JT=bJ] and G=a, (1.3)

where C defines the projection center and b is a parameter to be determined. It varies between
b =0 when the stress point coincides with the center of projection and b=1 when on the
bounding surface.
A basic assumption of this model is the addictive decomposition of the inelastic strain rate
into an elastoplastic strain rate and a viscoplastic one,
g =€ +¢&', with & =<L>a—f and &' =<¢>8—f,
oG oG
where L is the plastic multiplier, ¢ is the overstress function and the operator
<X> =(x +|x|)/ 2. The bounding function’s F stress gradient is evaluated at the image point.

(1.4)

There are two implicitly defined surfaces associated with each of the two inelastic
mechanisms. The first one defines the boundary outside which the plastic mechanism may be
active (in the loading case when L>0) and is specified by the constant s, such that on this
surface b=s_ /(s, —1). The second one defines the boundary outside which viscoplastic strain

occurs, is defined by constant s, and on this surface b=s /(s, —1). The overstress function
that controls the magnitude of the viscoplastic strain rates is measured relative to this surface
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(see Fig. 1) and is given by

1 J 5 )
d)—vexp(mJ(—r_r/st . (1.5)

The plastic modulus K, used in the evaluation of the plastic multiplier L is interpolated
from the one evaluated at the bounding surface Kp that is determined by invoking the plastic
consistency condition of the image point so that it makes a monotonous decreasing transition
from K =oo at the s surface to K = Kp at the bounding surface. The interpolation

function® was modified to

ﬁ:1+e°
A

(10p,) [ h(a) 2" +h,(1-2") |f, (1.6)

-K
in order to have dimensional consistency and so that the constants h, and h. are
dimensionless.

An explicit numerical integration algorithm of the model was implemented in the FLAC
explicit finite difference code. The explicit approach was chosen because of the explicit
nature of the code that requires very small time steps to maintain stability.

3 OEDOMETRIC TEST

Before applying the model in a boundary value problem it is important to assess its
behaviour under homogeneous stress/strain tests. The algorithm implemented in the FLAC
program was used to model an oedometric test, with unloading/reloading cycles, of a material
with the material constants calibrated for samples of San Francisco Bay Mud”.
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Figure 2 : One dimensional compression response computed with different strain rates.

The computed response using different strain rates can be observed in Fig. 2. For large
strain rates the response approaches that of the elastoplastic only material. The response
stress-strain curve tends to an inferior limit (in terms of stress) with the reduction of the strain
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rate.

4 TUNEL CREEP

The construction and 1 year of operation of a tunnel were simulated using FLAC. The
tunnel has a circular cross-section with 10m diameter and has 20m cover. It is built in a soil
having similar characteristics to those of SF Bay Mud®. The water level coincides with the
ground level and the soil is saturated. The value assumed for Ky is 0.43. It is also assumed
that the ground before the construction of the tunnel is in a state of equilibrium and no creep
1s taking place. As such the field of Iy values is computed so that the initial effective stress is
on the creep boundary defined by the constant s,. This is equivalent to apparent
overconsolidation due to creep. It is considered that the tunnel is built using a TBM. The
analysis is plane strain and the stress relief is gradually applied in 10 days. The lining is
activated after 30% stress relief. Undrained conditions are assumed so that only the effect of
creep takes place. Some results are presented in Fig. 3.
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Figure 3 : Lining moments evolution after construction.
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