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Summary. An integrated approach for all necessary variations within direct analysis,

variational design sensitivity analysis and shakedown analysis based on Melan’s static

shakedown theorem for linear unlimited kinematic hardening material behavior is formu-

lated. Remarks on the computer implementation and numerical examples show the effi-

ciency of the proposed formulation. Important effects of shakedown conditions in shape

optimization with elasto-plastic deformations are highlighted in a comparison with elastic

and elasto-plastic material behavior and the necessity of applying shakedown conditions

when optimizing structures with elasto-plastic deformations is concluded.

1 INTRODUCTION

When optimizing structures with elasto-plastic deformations the fundamental problem
occurs that deformations and stresses depend on the load path. Thus the optimized
structure depends not only on the maximal loading but also on the loading history. The
resulting shapes of structures optimized for the same maximal loading but different loading
paths can be very diverse. This problem becomes even more aggravated if more than one
load case must be considered. All possible load-combinations form the so-called load
domain. For elastic problems with multiple load cases it is permissible to consider only
the corners of this load domain during optimization. The optimized structure will be safe
for all possible load paths within this load domain. For elasto-plastic structures this is
not the case. For the optimization of these elasto-plastic structures with multiple load
cases it is necessary to consider shakedown conditions.

2 ELASTIC SHAKEDOWN ANALYSIS

Shakedown of elasto-plastic systems subjected to variable loading occurs if after initial
yielding plastification subsides and the system behaves elastically. This is due to the fact
that a stationary residual stress field is formed and the total dissipated energy becomes
stationary. Elastic shakedown (or simply shakedown) of a system is regarded as a safe
state.
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Classical Prandtl-Reuß elasto-plasticity for linear unlimited hardening with von Mises
yield condition is considered here. Consider a polyhedral load domain M defined by M

load vertices. The elastic stresses corresponding to each of these vertices are denoted σE
j .

The system will shakedown if there exist at least one admissible residual stress field ρ̄(X)
and one backstress field γ̄ (X), such that

Φ = ‖dev [βσE
j (X) + ρ̄(X) − γ̄ (X))]‖ −

√

2
3
Y0 ≤ 0 ∀ (X, j) ∈ Ωo ×M (1)

is satisfied for all possible load vertices j within the given load domain M. If this condition
is fulfilled exactly the multiplier β will be a lower bound to the true elastic shakedown
multiplier, see2 for more details on shakedown analysis. Thus, we seek to maximize β

subject to the above constraint.
The numerical formulation of the shakedown analysis takes advantage of the local na-

ture of the failure for the considered material. In a first step the solution of the equilibrium
conditions Gj = 0 for any load vertex j is computed. Then the vectors of elastic stresses
σE

j (i) in any Gaussian point i of the discretized structure are calculated. In a final step the
solution of the global discretized shakedown optimization problem is calculated by solving
local optimization problems in any Gaussian point. The global maximal load factor β is
given by

β = β̄ with β̄ = min
i=1,NGP

βi, (2)

where βi is the solution of the local sub-problem defined in the i-th Gaussian point

L(βi, y(i), λi) = −βi + λiΦ[βiσ
E
j (i), y(i)] → stat (3)

where the internal stresses y(i) are unconstrained difference vectors of residual stress fields
ρ̄(i) and backstresses γ̄(i).

3 SHAPE OPTIMIZATION OF SHAKEDOWN PROBLEMS

Structural optimization essentially needs an efficient strategy for performing the sen-
sitivity analysis, i.e. for calculating the design variations of functionals modeling the
objective and the constraints of the optimization problem. These demands are addressed
within the so-called design sensitivity analysis.

3.1 Variational design sensitivity analysis of shakedown problems

The sensitivity analysis of the objective function and the constraints can be performed
with different methods. Our approach is based upon the variational design sensitivity
analysis of the investigated functionals1. This means the variations of the continuous
formulation are calculated and then in a subsequent step they are discretized in order
to get computable expressions. The main advantage of this methodology is that the
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Figure 1: Flow chart of structural analysis, sensitivity analysis and shakedown analysis

sensitivity analysis can be formulated analogous to and consistent with the structural
analysis and the shakedown analysis.

The sensitivity expressions are derived by linearizing the weak form of equilibrium
Gj with respect to geometry, while, as is well known, the tangent stiffness is derived by
linearizing the weak form of equilibrium with respect to displacements. The variation of
the displacement mapping δuo

j is implicitly defined by

∂Gj

∂u0
j

δu0
j = −

∂Gj

∂X
δX. (4)

A subsequent discretization process ends up in the finite dimensional expressions for sen-
sitivity analysis introducing the element sensitivity matrix obtained by the linearization
process with respect to design as a natural counter part to the well known element stiffness
matrix.

Additionally, the partial variations of the optimality condition L := δzL = 0 of the
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shakedown analysis problem w.r.t. displacements and geometry must be calculated. The
variations of the load factor and of the internal stresses δz := (δβ, δy)T are implicitly
defined by

∂L

∂z
δz = −

∂L

∂X
δX −

∂L

∂u0
j

δu0
j . (5)

A discretization of this formulation finally ends up in computable expressions for the
sensitivity of the load factor w.r.t. geometry.

3.2 Numerical formulation and implementation

In Figure 1 the implemented steps for structural and shakedown analysis as well as for
sensitivity analysis in one single iteration of the shape optimization are shown. See3 for
more details on the numerical formulation. First of all the solution u0

j of the equilibrium
conditions Gj = 0 for any load vertex j is computed. Then the vectors of elastic stresses
σE

j (i) in any Gaussian point i of the discretized structure as well as their sensitivity w.r.t.
displacements δu0

j
σE

j and geometry δsσ
E
j are calculated and stored. In a final step the

solution of the global discretized shakedown optimization problem β and its sensitivity
δβ is calculated by solving local optimization problems and performing their variation
w.r.t. displacements and geometry in any Gaussian point.

4 SUMMARY

The proposed representation of variational design sensitivity describes an integrated
treatment of all necessary linearizations in structural analysis and sensitivity analysis of
shakedown problems.

The resulting geometries derived by optimization with shakedown constraints are well
adapted to arbitrary load paths and an unlimited number of load cycles in the whole
load domain. The comparison with results for problems with elastic and elasto-plastic
deformations where only one load case is considered show that the level of structural safety
as well as the savings derived in optimization with shakedown constraints are in-between
these two limiting cases.

REFERENCES

[1] F. J. Barthold and K. Wiechmann. Variational design sensitivity for inelastic defor-
mation. In Proc. COMPLAS V Barcelona, 792–797, 1997.

[2] J. A. König. Theory of shakedown of elastic-plastic structures. Arch. Mech. Stos. 18,
227–238, 1966.

[3] K. Wiechmann and E. Stein. Shape optimization for elasto-plastic deformation under
shakedown conditions. International Journal of Solids and Structures, submitted.

4


