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Summary. In this paper a new eight-node solid-shell finite element formulation based
on the concept of reduced integration with hourglass stabilization is presented. FExploiting
a Taylor expansion of the first Piola-Kirchhoff stress temsor with respect to the normal
through the centre of the element the stress becomes a linear function of the shell sur-
face coordinates whereas the dependence on the thickness coordinate remains non-linear.
This leads to a shell formulation which requires only two Gauss points. In the context
of forming simulations the following advantages are especially important: (1) computa-
tional efficiency, (2) correct representation of the geometry in thickness direction (crucial
for contact modelling), (3) no modifications with regard to kinematics and material mod-
elling.

1 INTRODUCTION

The numerical simulation of deep drawing processes demands high standards of fi-
nite element technology, because the workpieces undergo extreme bending, whereas the
material is plastically incompressible.

To overcome the well-known problem of locking, recently, several authors (see e.g. Puso
[1], Cardoso et al. [2] and Reese [3]) have proposed to transfer the enhanced strain method
into finite element formulations based on reduced integration with hourglass stabilization.
The present method is special in the regard that a Taylor expansion of the first Piola-
Kirchhoff stress tensor with respect to a point on the shell normal is carried out. We
arrive at a formulation with only two Gauss points located on the shell normal to capture
the non-linearity of the stress function over the thickness. For more details see Reese
[4]. Alternative large strain solid-shell formulations based on reduced integration can be
found in Hauptmann et al. [5] and Legay & Combescure [6].
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Besides its robustness and efficiency the formulation offers the following advantages.
The element possesses eight nodes and only displacement degrees-of-freedom. As such it
is very suitable to be used in contact problems. There are no additional assumptions or
restrictions with respect to the kinematics or the material law, i.e. arbitrary continuum
mechanical material laws can be implemented. In the present contribution we investigate
in particular the performance of the new finite element technology in the context of deep
drawing simulations, partially with regard to the use of the element in a commercial code.
The results show that the new element formulation has the potential to develop into an
excellent tool for practical forming simulations.

2 VARIATIONAL FUNCTIONAL AND INTERPOLATION

The starting point of the present paper is the same two-field functional as the one sug-
gested by Simo et al. [7]. The total strain H” = Grad u® + H", is additively decomposed

enh
into a compatible part Grad u® (u" displacement vector) and an incompatible (or en-

hanced) part H” ,. The index h indicates that the superscripted quantities have already

enh*
been discretized by a suitable spatial interpolation. The interpolation of H" (bold italic

letters are used for matrix notation) is chosen as

Hh:(Blin+(j(l)Llllg+j(2)Lﬁg)th)Ue+j(1)LenhWe (1)
N ~ S %/_/
= Hf:lomp:Hﬁn—i_Hﬁg = H(’alnh

The 24x1 vector U, (U! = {U],,...,U7,,...,Us,}, I =1,...,8) and the 9x1 vector W,
include the nodal displacement degrees-of-freedom and the internal degrees-of-freedom,
respectively. It should be mentioned that By;, represents the constant part of the classical
B-operator and is as such independent of the local (convective) element coordinates &, n
and ¢ (defined on a cube Q, with the side length 2). The matrices ji (i = 1,2) include
the coefficients of the inverse Jacobian matrix J ' evaluated in the centre of the element
€ = {{,n,(} = 0. The quantity M), incorporates the so-called hourglass stabilization
vectors which are also constant within the element. The dependence of H" on the local
coordinates is described by the matrices Lig (t = 1,2) and Len, which either depend
linearly (L}llg, Lcy,) or bilinearly (Lﬁg) on &, n and (.

3 TAYLOR EXPANSION OF THE FIRST PIOLA-KIRCHHOFF STRESS
TENSOR

At the present state of the derivation the formulation does not differ majorly from the
3D enhanced strain concept by Simo et al. [7] or the 3D reduced integration technique
suggested by Reese [3]. The latter classical 3D elements are known to exhibit shear locking
in the case of bending of very thin structures. In the present paper we aim to overcome
this deficiency. The key question is how the present 3D approach can be transferred into
a powerful solid-shell concept.
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The Taylor expansion of the first Piola-Kirchhoff stress tensor P" with respect to the
element centre & = 0, as it has been carried out in Reese [3], leads to a stress-strain relation
which is linear in the local coordinates &, n and (. For thick-walled geometries this is not
a problem because a realistic finite element modelling of such structures usually requires
several element layers in each direction. In the case of thin-walled structures, however,
established shell formulations work with only one element over the thickness. A new
solid-shell concept can only be competitive if it also shows the just mentioned advantage.

The linear dependence on ( (if ¢ is the thickness direction) is therefore here not useful
because the solid-shell concept should be able to capture as well as possible any non-linear
stress-strain behaviour over the thickness by means of one element. For this reason the
Taylor expansion is carried out with respect to the point &, (£&X = {0,0,¢}) so that the
non-linear dependence on ( is retained in the constitutive quantities. Inserting the Taylor
expansion into the two equations of weak form yields two contributions. The first one has
a structure which is very similar to the internal residual force vector known from standard
displacement formulations. The second one is the so-called hourglass contribution.

4 NUMERICAL EXAMPLE: PINCHED CYLINDRE WITH END DIA-
PHRAGM

A typical shell example is the so-called “cola can”. Geometry and boundary conditions
are given in Figure la. For more details, also about the chosen material parameters, see
Reese [4]. The curves plotted in Figure 1b show that the reaction force in node A does not
monotonically increase with increasing displacement w 4. This well-known effect is due to
local buckling phenomena. It contributes to the fact that the present computation reacts
rather sensitively to the choice of the time step and the discretization. Convergence is
nevertheless obtained (Figure 1b). The results are comparable to the ones of Eberlein &
Wriggers [8] (indicated by the legend EW in Figure 1b) who use a four-node shell element.
The visible kink at a reaction force of about 1000 N is also described in this paper. In
Figure 2 the deformed state of the structure at ws = 200mm is plotted for different
discretizations. The contours refer to the yield criterion ®.
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Figure 1: (a) Pinched cylindre. Geometry, boundary conditions and discretization, (b) Study of conver-
gence
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Figure 2: Contours of the yield criterion ® plotted on the deformed configuration at wy = 200 mm
(meshes: 32x16, 48x24, 64x32)
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