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Summary. A novel, fully three-dimensional finite element formulation suitable for the
modeling of locally embedded strong discontinuities at finite strains is presented. Following
the Strong Discontinuity Approach (SDA), the proposed numerical model is based on an
additive decomposition of the displacement gradient into a conforming and an enhanced
part. While the conforming part is associated with a smooth deformation mapping, the
enhanced part captures the final failure kinematics of solids. These localized deformations
are approximated by means of a discontinuous displacement field. In contrast to previous
works, the presented finite element formulation does not require the employment of the
static condensation technique. The proposed algorithm is based and a predictor/corrector
procedure which is formally identical to the return-mapping algorithm of classical (local and
continuous) computational plasticity models. Hence, subroutines designed for standard
models can be applied with only minor modifications necessary.

1 KINEMATICS ASSOCIATED WITH STRONG DISCONTINUITIES

In what follows, a body Ω ⊂ R
3 is separated by a hyperplane ∂sΩ ⊂ Ω of class C1

(piecewise). Based on this partition, an approximation of the displacement field of the
type

u = ū + [[u]] (Hs − ϕ), with ū ∈ C∞(Ω, R3), ϕ ∈ C∞(Ω, R) (1)

is adopted. In Equation (1), Hs denotes the indicating function of the subset Ω+, [[u]]
the displacement discontinuity and ϕ a smooth ramp function (see [1]). By applying the
generalized derivative D(•), the deformation gradient is assumed to be of the type

F := 1 + GRADū − ([[u]] ⊗ GRADϕ) + ([[u]] ⊗ N) δs, (2)

with δs representing the Dirac-delta distribution and N the normal vector of ∂sΩ. Since
the enhanced strains are modeled in an incompatible fashion, it is admissible to neglect
the gradient of the displacement jump (GRAD [[u]] = 0), cf. [1, 2]. In the proposed EAS
concept, only the field ū is approximated globally conforming, i.e. by using standard
shape functions.
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The additive decomposition (2) of the deformation gradient is not well-suited for the
development of constitutive equations. Following [3], Equation (2) is rewritten into a
multiplicative decomposition as

F = F̄ · F̃ , with
F̄ = 1 + GRADū − [[u]] ⊗ GRADϕ

F̃ = 1 + J ⊗ N δs, J := F̄
−1

· [[u]] .
(3)

2 CONSTITUTIVE EQUATIONS

Since the strains in Ω± are regular distributions, standard (local stress-strain) constitu-
tive equations can be applied. As a prototype, a hyperelastic material response governed
by the energy functional

Ψ(C) = λ
J2 − 1

4
−

(

λ

2
+ µ

)

ln J +
1

2
µ (trC − 3) , J := det F (4)

is adopted, with C, λ and µ denoting the right Cauchy-Green tensor and the Lamé

constants, respectively.
Inelastic deformations are taken into account by means of a cohesive law of the type

T |∂sΩ =: T s = T s([[u]]) (5)

in terms of the traction vector T = P · N depending on the first Piola stresses P and
the normal vector N . That is, a cohesive model connecting the traction vector T and
the displacement jump [[u]] is used.

The coupling between the constitutive equation (4) and the traction separation law (5)
is provided by the condition of traction continuity. With the positive definiteness of a
norm || • || and applying a pull back operation to the traction vector, i.e. T̄ = F̄

T
· T ,

this continuity condition reads

φ(T̄
+
, T̄ s([[u]])) := ||T̄

+
− T̄ s([[u]])|| = 0. (6)

Here, T̄
+

denotes the right hand side limit of the traction vector T̄ at X0 ∈ ∂sΩ. Since the
identity T̄ = C ·S ·N holds (S is the second Piola-Kirchhoff stress tensor and C ·S
are the Mandel stresses), the condition of traction continuity is formally identical to the
necessary condition of yielding known from standard finite strain plasticity theory. As a
consequence, it is possible to develop cohesive laws following the same ideas as applied in
classical plasticity models. More precisely, we introduce the space of admissible stresses
ET̄ := {(T̄

+
, q) ∈ R

3+n|φ(T̄
+
, q) ≤ 0} and consider evolution equations of the type

J̇ = λ ∂
T̄

+g, α̇ = λ ∂qh. (7)

In Equations (7), g and h are potentials defining the evolution equations of the displace-
ment jump J and those of the displacement like internal variables α conjugated with q,
and λ is a plastic multiplier. Setting φ(T̄

+
, T̄ s([[u]])) = ||T̄

+
− T̄ s([[u]])||, g = h = φ and

choosing the internal stress-like variables to q = T̄ s, the standard continuity condition
is obtained. Hence, the condition of traction continuity is included in the more general
concept defined by the space of admissible stresses. For further details, cf. [4].
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3 NUMERICAL IMPLEMENTATION

The numerical implementation of all SDAs is based on the weak form of equilibrium
together with the weak form of traction continuity, i.e.

∫

Ωe

GRADη0 : P dV =

∫

Ωe

B · η0 dV +

∫

ΓP

T ∗ · η0 dA

1

V e

∫

Ωe

P · N dV =
1

As

∫

∂sΩ

T s dA

(8)

Here, η0, B, T ∗, V e, and As denote a continuous test function, body forces, tractions
prescribed on the Neumann boundary ΓP , the volume of the respective finite element
e and the area of the singular surface ∂sΩ, respectively. Since the displacement jump is
assumed as spatially constant, Equation (8) can be rewritten as

φ(ave(T ), T s) = 0, with ave(•) :=
1

V e

∫

Ωe

P · N dV. (9)

As a consequence, the condition of traction continuity is again formally identical to the
necessary condition of yielding known from standard plasticity theory, and the concept
as proposed in the previous section can be applied. That is, we introduce the space of
admissible stresses ET̄ := {ave(T̄ ), q) ∈ R

3+n|φ(ave(T̄ ), q) ≤ 0} and define the evolution
equations according to

J̇ = λ ∂ave(T̄ )g α̇ = λ ∂qh. (10)

For further details, refer [4].

The constitutive equations defining the proposed cohesive model are formally identical
to those of standard plasticity model. Hence, the return-mapping algorithm can be ap-
plied. For that purpose, a trial step characterized by purely elastic deformations is defined
by Jn+1 = Jn and qn+1 = qn. If unloading is signaled, the trial step represents already
the solution. Otherwise, a backward-Euler integration is applied to integrate the evolu-
tion equations (10). The solution of the resulting set of nonlinear algebraic equations is
computed using Newton’s method. Although some steps involved in the derivation of
the algorithm are by no means trivial, details are omitted due to the shortage of space.
However, in the case of linearized kinematics, details may be found in [4].

4 NUMERICAL EXAMPLE

The applicability and the performance of the presented 3D finite element formulation
are demonstrated by means of a numerical analysis of shear band propagation on a steel
made bar (length = 8 cm, cross section 2 cm × 2 cm). It is assumed that a slip band

forms if φ = ||T̄
+
− (T̄

+
· N) N ||2 − q(α) > 0 (for the trial state) and N is computed
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by means of a bifurcation analysis, cf. [5]. According to the snapshot, a typical mode-II
failure is predicted. The angle between the normal vector N of the corresponding slip
band and the direction of the major principle stress normal is about 45◦. By comparing
the results obtained from the geometrically linear model with those computed from the
finite strain formulation, the importance of accounting for large deformations is apparent.
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