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Summary. Concrete in dynamics shows viscoelastic material behaviour because of a fre-
quency dependent stiffness and attenuation effects. We study two viscoelastic constitutive
models applied to the description of concrete under impact loading. The first model is
based on a chemo-plastic formulation, while the second model is a general viscoelastic
model using fractional time derivatives. Both models are used to reproduce results from
Split Hopkinson Bar tests.

1 INTRODUCTION

The behaviour of concrete under impact loading is object of extensive studies. Concrete
is a highly rate-dependent material at loading rates exceeding 15 GPa/s. This means
that the apparent macroscopic mechanical properties of concrete depend on the applied
loading rate. This has been determined, experimentally, for the material strength and,
to a smaller extent, for the stiffness and the fracture energy. To reproduce the response
of concrete structures exposed to extreme dynamic loading, reliable material data and
numerical material models, with rate effect properly taken into account, are crucial. Rate-
dependency in high-rate dynamics is mainly caused by inertia effects. Moisture in nano-
and micro pores contributes to an increase of the material parameters for moderate loading
rates.

In this contribution, we present two viscoelastic constitutive models to account for the
strengthening effect associated with viscous phenomenon due to moisture. A viscoelas-
tic material model for the bulk material is necessary in order to take into account the
dispersion and attenuation effect and a frequency dependent stiffness. We elaborate the
viscoelastic plastic model described in [1-3], in which retardation of micro-crack growth is
taken into account. A general viscoelastic model based on fractional time derivatives [4]
is also presented. Both models are coupled to a damage model. Results from simulations
of a Split Hopkinson Bar test are compared.
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2 CHEMO-PLASTIC MODEL

Realistic modelling of concrete is difficult due to its porous micro-structure. Different
mechanisms take place in micro- and nano-pores, and the mutual dependency of these
mechanisms complicates the material modelling. To improve a constitutive model, chem-
ical kinetics at the macro level can be considered by using the theory of reactive porous
media [5]. The hydration process and alkali silicate reactions in early-age concrete or
viscous phenomena due to moisture in the nano-pores in high-rate dynamics are two ex-
amples of chemical reactions. Both reactions influence the mechanical material properties
of concrete.

We consider the viscoelastic plastic model derived by Sercombe et al [1, 2]. The model
can be formulated as
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where the viscous strains are expressed as \s x- Here x and s are the averaged viscous
strain and deviatoric stress tensor, respectively. Another deviation from a standard plas-
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Figure 1: An extra trial stress is necessary for the viscoelastic model [1, 2]: trial stress (A) is outside
the initial elastic domain (blue line) and inadmissible; however, the stress state (B) can be elastic after
viscoelastic effects (black line) or it can remain outside and a return mapping scheme is activated (C).
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ticity formulation is the chemical affinity A, which represents the stress associated with
the viscous process, including the rigidity £. Algorithmic aspects of the model can be
found in [1, 6]. An important feature of the coupled viscoelastic plastic model is illus-
trated in Figure 1. In this model, an intermediate trial stress is necessary. This is due to
the hardening force ¢ being a function of the equivalent plastic strain x and the averaged
viscous strain y. At the global level, these dependencies lead to an increase of the peak
load and the initial stiffness.

3 VISCOELASTIC MODEL USING FRACTIONAL TIME DERIVATIVES

A spring-pot is a general viscoelastic rheological element, which makes use of fractional
time derivatives. In what follows, we give a general overview of the model. More details
can be found in [4, 7, 8].

In an elastic spring, the stress is proportional to the instantaneous strain and is inde-
pendent of the strain rate. In a viscous fluid element, the stress is proportional to the
strain rate and independent of the strain. However, in a viscoelastic material a combina-
tion of both phenomena is present and a spring-pot interpolates between the properties
of the two elements. The relative influence of the two phenomena is defined through the
order of derivative o (0 < @ < 1) in Equation 2.

In impact dynamics a wide range of frequencies are activated and, due to inhomo-
geneities in concrete, relaxation times may change. Therefore, elements in rheological
models are often arranged in series or in parallel and any combination of springs and
dashpots can be included in this formulation. The model hinges on the concept of frac-
tional derivative. The fractional derivative of a function f can be approximated by

) e (5] ’

where + is the time step, IV; is a number of history terms and A;,; are the Griinwald

coefficients [4] defined as
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in which I' is the Gamma function. In Figure 2, results from a creep test for a Kelvin
element are given to show the influence of the order of derivative, viscosity and the number
of history terms. Note that o = 1.0 results in a standard differential equation with integer
order of derivatives, where the analytical solution is an exponential function.
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Figure 2: Creep test for a Kelvin element. Left: influence of the order of derivative (V; = 100 and
n = 50-2%;). Middle: number of history terms (a = 0.50 and n = 50-%;). Right: different viscosities
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(e =0.50 and N; = 100).
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