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Summary. A formulation for a quadrilateral finite element with an embedded discontinuity, 
designed for large displacements, is presented. Lagrange multipliers are used to impose the 
condition that the embedded discontinuity is not activated before crack initiation. Additional 
degrees of freedom are incorporated in the element, including rotations, which permit the 
representation of the two states of the crack. A strain enhancement technique is utilised to 
improve the performance of the element in bending. Some numerical examples are used to 
illustrate the robustness of the proposed solutions.  

 
 

 
1 INTRODUCTION 

The modelling of failure using the Finite Element technology has been an important topic 
of study in recent years. Failure is often associated with the development of strain localization 
phenomena which, at the constitutive level is usually associated with strain softening models. 
The numerical discretization of these models typically results in unstable solutions with 
numerical pathologies like mesh size and orientation dependency. Non-local models, which 
include a length scale internal parameter, are among the possible solutions which also include 
the so-called strong discontinuity models that will be adopted in this work. The use of 
embedded strong discontinuities, in the displacement field of the finite element solution, 
allows the treatment of the localization area with a null width, avoiding the need for 
remeshing as a crack is progressing and making this type of approach very attractive.  

In this work a 2D formulation for embedded discontinuities is presented. Departing well 
established formulations, which were proposed in recent years, a slight different approach is 
proposed by using Lagrange multipliers to prevent the activation of the embedded 
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discontinuity before crack is opened. Rotations are included, apart from the usual translational 
degrees of freedom, to represent the crack. A strain enhancement technique is utilised to 
improve the performance of the element in bending. 

 

2 KINEMATICS OF EMBEDDED DISCONTINUITY  
The representation of the embedded discontinuity for a single quadrilateral element1 is 

represented in Figure 1.  

 
 

Figure 1: Element with embedded discontinuity.  

The displacement vector of a point X∈Ω1∪Ω2 due to the crack induced rigid body motion 
is calculated as: 
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  (1)

where α1 and α2 represent the local displacements of the upper crack face at the point O and  
α3 represents the crack face rotation, r is a number belonging to the set { }1,1− . S and N are, 
respectively, the tangential and normal vectors at a local frame defined at the crack mid line. 
The total displacement field, u, can then be determined as the sum of the regular displacement 
and the jump: 

{ {
jumpregular

ˆ= −u u u  (2) 
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A constraint must be applied to the αi variables so that no penetration of the two cracked parts 
takes place. The conditions to be satisfied are then: 

3 2 2l sinα +α 0  α 0≥ ≥∧         (3) 

where l is the length of the crack inside the element. By adopting a “nodal” integration rule 
along the crack in which the “nodes” are the intersection of the crack with the sides of the 
element the first condition is reduced to the second one which is therefore included in the 
discrete crack compliance law in a penalised form.  

3 CONSTITUTIVE LAW AT THE CRACK 
If the crack is open the following stress vector is defined in the local coordinates of the 

crack: 
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(4) 

where 1cτ  is the maximum allowable positive principal stress, fG  is the fracture energy, k is 
the maximum normal displacement, intd  is the initial shear stiffness of the crack and ρ  a 
penalty parameter imposing the inequality condition (3).  
 

4 EQUILIBRIUM EQUATIONS 
The weak form of equilibrium equations can be expressed as: 

( ) ( ): . .
Vo lo Vo

δ dVo δ dlo δ dVo∇ + =∫ ∫ ∫τ F u w α t b u  (5) 

where the first term is associated with the strain energy, the second one with energy at the 
crack and the last one with the body and external forces1. The condition of non existence of 
the crack is imposed in the weak form by a Lagrange multiplier technique as: 

( ) ( )( ): . .
Vo lo Vo

δ dVo δ dlo δ 1 h h δ dVo

δΨ

⎡ ⎤∇ + + − + =⎣ ⎦∫ ∫ ∫144424443
τ F u w t λ α λ b u  (6) 

where λ  are the Lagrange multipliers, α  is the vector of the αi variables at the crack and h is 
a crack state parameter which is equal to zero if the crack is closed and equal to one if he 
crack is opened.  
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5 NUMERICAL EXAMPLE 
The example presented is a double edge-notched tension test with a simultaneous growth 

of two cracks in mode I. Geometry and boundary conditions are represented on the left side of 
Figure 2. In the middle of the figure the crack paths are shown for an imposed displacement 
value of 0.2 mm. The locations of crack initiation are not defined a priori. Two enlarged parts 
of the cracked zones are presented on the left side of the picture. On the first one the penalty, 
related to the impenetrability condition in equation (4), is set to zero and it is possible to see 
that large interpenetration occurs in the right side of the mesh. In the second the penalty value 
is set to f

2
1c Gρ τ=  preventing the interpenetration of the two sides of the elements to take 

place.  
 

 

  
 
 
 
 

 
Figure 2: Double edge-notched tension test 

. 

12 CONCLUSIONS 
- The incorporation of rotation variables, as well as the symmetric treatment of the 

rigid body displacement field induced by the crack improved the robustness of the 
embedded discontinuity formulation. 
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