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Summary. We propose in this paper a new technique to regularize elastic-plastic constitutive 
law in view to apply the asymptotic numerical method (ANM) to computational plasticity.  
 
 
1 INTRODUCTION 

        The aim of this work is to present a new regularization technique to solve plasticity 
problems in the framework of the asymptotic numerical method (ANM). We recall that ANM 
is a family of techniques associating perturbation technique and finite element discretization 
which allows us to search solution branches in the shape of power series with a reduced 
number of decomposed matrices. A large bibliography about ANM can be found in1. Elastic 
plastic constitutive laws induce strong nonlinearities that one has to take into account in the 
numerical simulation of material forming process and combine two unilateral conditions. The 
first one concerns the transition from elastic domain to the plastic one and the second 
condition concerns the elastic unloading. An efficient ANM algorithm has not been proposed 
yet for the treatment of elastic unloading. Plastic behavior was taken into account within the 
framework of deformation theory of plasticity2-3-4, for the Norton-Hoff model, for unilateral 
contact, or for problems coupling these nonlinearities1.   

2   A SMOOTH APPROXIMATION OF THE ELASTIC PLASTIC MODEL 

      In this study we adopt the flow theories with linear hardening and we take into account the 
elastic unloading. The basic idea is to replace the non smooth problem by a smooth one in 
such a way that solution curves can be expanded into power series2-3. The modified 
constitutive law is set in the following form: 
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      Where λσεεσ &,,,,,,, e

p fqn denotes respectively stress, strain, plastic strain, normal of 

the loading surface, von Mises stress, loading function, the yield stress and the plastic 
multiplier. yh σµ ,,  are the shear modulus, hardening modulus and the yield stress. Equation 

(2, 8, 9) involve regularization parameters 321 ,, ηηη . These parameters are chosen 

significantly small in order that the smooth constitutive law is close to the exact plasticity 
model. The functions G in (9) and H in (8) describe the elastic plastic transition and the 
loading-unloading one. 

3 HIGH ORDER SOLUTION TECHNIQUE 

      In computational structural mechanics, as well posed problem is defined by associating 
the constitutive law with the equilibrium equation and boundary conditions. Within the 
framework of asymptotic numerical method, the aforementioned problem is solved by an 
algorithm coupling a spatial discretization, the perturbation technique and a continuation 
procedure. Within this framework, the solution path is represented by truncated power series 
in the form:   
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Where ( )...,,, pU εεσ=   contains the unknowns of the constitutive law,0U  is a starting values 

of the current path, N is a given truncation order and “a” is a suitable path parameter. A key 
point is the evaluation of the end point of the interval maxa . Within the ANM this latter is 

automatically computed and usually evaluated by requiring that the last term of the truncated 
series is small enough with respect to the first one. For the plasticity problems, we propose to 
define the step length from the evolution of several unknowns as follows:                 
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The parameter δ  in (12) is a small user parameter that permits to control the accuracy of the 
solution and the size of the step length.  Classically, the ANM step length is defined from a 
single type of variable, as displacement or velocity fields1. With this new measure of the step 
length (12), there is a large probability to get an accurate solution of each equation in (1-10) 
along the step.  

4 EVALUATION OF THE NUMERICAL PROCEDURE  

      In this section, numerical tests presented in order to evaluate the ability of the procedure 
to present a typical process (elastic, plastic, elastic unloading). We impose a strain in the 
shape of equation (13). A regularized relation between t  and )(tε  is assumed:  
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 In the numerical test, data are chosen as: 

.1.0,,10.5,100,240,3.0,10.2 4
55 ======= η
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regularization of the elastic plastic model, two cases will be considered: a weakly modified 
case 1.01.0 32 == ηη  table (1a) and a more strongly modified case 5.01.0 32 == ηη table (1b). 

Many computations of this problem have been done for values the accuracy parameter 
δ smaller than ( 310− ), for several orders N and for various values of the regularization 
parameters 32 ,ηη and 4η . Some typical results are presented on figures (1a) and (1b) and on 

the tables (1a) and (1b). The response curves have been obtained in a correct and automatic 
manner in all the tested cases. Thus, the present procedure seems to be very robust. The 
figures established that the modification of the constitutive laws does not affect significantly 
the physics of the problem. Especially, the elastic modulus, the plastic slope and the 
unloading phase are predicted correctly. The difference between the smooth and the non 
smooth curves is restricted to the vicinity of the corners. The first corner (elastic to plastic) is 
more softened if 3η is larger. The same holds for the second corner (unloading) with 

large 2η .The convergence properties are quite similar to those obtained in various problems 
solved by ANM1. The number of steps decreases if the order N, the accuracy parameter δ or 
the regularization parameters increases (see table 1a and 1b). Note that no correction is 
needed throughout the computation contrary to the classical iterative algorithms which require 
iterations at two levels: to compute the stress at the integration point and to correct the 
residual of the equilibrium equation. 

 

 

 610−=δ  410−=δ  310−=δ  
N=10 110 72 55 
N=15 64 49 42 
N=20 49 40 37 
N=30 37 36 34 

 610−=δ  410−=δ  310−=δ  
N=10 88 55 40 
N=15 54 41 32 
N=20 38 34 28 
N=30 32 28 25 

(a) (b) 
Table 1 :  Number of steps versus the truncation orders 
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Figure 1: Stress-strain response: for (a) 1.0,10,15 32

7 ==== − ηηδN  (66 steps) and (b) 

5.0,1.0,10,15 32
3 ==== − ηηδN  (32 steps). The point denote the step ends of the 

asymptotic solution and the continue line represents the analytical solution.  

5 CONCLUSIONS 

 A new manner to get smooth approximations of response curves within plasticity has 
been presented. As compared with previous works, the main innovation is the treatment 
of elastic unloading. This method can be easily applied in finite element framework and 
this could permit to introduce some advantages of ANM in computational plasticity, 
especially to define a robust algorithm to calculate response curves with abrupt changes 
of direction. The management of computation is often difficult in plasticity, because the 
problem   involves two coupled unilateral conditions. An improved technique to define 
the step length was necessary to get a robust algorithm and no correction is needed 
throughout the computation contrary to the classical iterative algorithms which require 
iterations at two levels: to compute the stress at the integration point and to correct the 
residual of the equilibrium equation.  
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