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Summary. The piecewise full decoupling method is a new numerical procedure for 
determining the frequency response of vibrating systems with clearances. The method is an 
extension of classical method of piecing the exact solutions. Numerical examples are given to 
illustrate the both solution procedures. 
 
1 PROBLEM FORMULATION 

A large class of dynamical systems  is subjected to relative motion across the clearance 
space and impacting between the components. The characteristics of a system with clearances 
include an abrupt variation of stiffness usually assumed as piecewise linear. Generally, such 
system is modelled as an -degree-of-freedom semi-definite system which consists of 1n + 1n +  
mass elements, n linear viscous dampers, m ≤ n piecewise linear stiffness elements and n m−  
linear springs. The equation of motion, in nondimensional form, can be written as: 

'' '
0( ) cos( )a ητ+ + = +q Zq Ωh q f f  (1) 

where  is the displacement vector,  is the nonlinear displacement vector with piecewise 
linear and linear terms while  and 

q ( )h q
Z Ω  are the damping and stiffness matrices, respectively. 

Furthermore,  and  are the amplitude vectors of mean and alternating load and 0f af η  denotes 
a nondimensional excitation frequency. Piecewise linear stiffness elements are defined by the 
piecewise linear displacement function as follows: 
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2 THE METHOD OF PIECING THE EXACT SOLUTION  
A motivation for developing the new numerical method for solving piecewise linear 

equations of motion has been the well-known method of piecing the exact solution which is 
briefly discussed as follows. Considering a two-degree-of-freedom semi-definite system with 
clearance, the equation (1) yields: 
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'' '
02 ( ) cos(aq q h q f f )ς ητ+ + = +  

(3)

The analytical solutions of the above equation, for the domains 1q < −  and  are: 1q >
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while the solutions for the domain  takes the form: 1 q− ≤ ≤1
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The coefficients lA  and  (l = 1(1)3) depend on initial conditions that they have to be reset at 
every switchover from one domain to other. The determination of switching points can be 
done only numerically. 
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3 THE PIECEWISE FULL DECOUPLING METHOD 
The new developed numerical procedure of explicit integration, namely, the piecewise full 

decoupling method is based on the method of piecing the exact solutions. The method is 
applicable to multi-degree-of-freedom systems with clearances. The equation (1) can be 
substituted with a set of linear equations of motion, defined inside each of domain: 

'' '
0 cos( )j j a ητ+ + = + +Ω Ωq Zq Π q p f f ,    1(1)3mj = (6)

where  denotes the local stiffness matrix and  is the vector of the breakpoints. The 
mechanical system starts from an initial position described with one of the local equation of 
motion. When the system changes a domain, the system is represented with the new local 
equation of motion. 

jΩΠ jΩp

Local equations of motion are solved by applying the state-space formulation. By 
employing the state vector , the equation (6) can be transformed into the first-order 
differential equation, with the state matrix A of the form: 
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(7)

The matrix A  is a real nonsymmetric matrix and its eigenvalues can be calculated using one 
of numerical routines for the nonsymmetric eigenvalue problem. Obtained eigenvalues enable 
a transformation of the state variable  to the normal coordinate y z : 

=y V z  (8)

where  is the matrix of eigenvectors. The coordinate transformation (8) leads to the 
uncoupled equation of motion: 

V

' = +z Λz g  (9)
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where diag( ), 1(1)2k k nλ= =Λ  is the matrix of eigenvalues and  is the excitation vector. The 
uncoupled equation (9) has well-known analytical solutions. 

g

4 NUMERICAL EXAMPLES 
Two examples are studied to illustrate the both methods. Using the method of piecing the 

exact solutions, the frequency response of the system represented by the equation (3) is 
obtained here and presented in Figure 1. A steady state solution for the single point of 
excitation frequency is calculated simulating 64 excitation periods for each of two initial 
conditions; trivial (0,0) and unit (1,1). This procedure is well suited 1 because no another 
reliable way to distinguish the transient and steady state motion at chaotic responses. Only 
approximation done in the procedure is the numerical determination of the points of entering 
in each domain. 
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Figure 1: Frequency response of the two-degree-of-freedom semi-definite system with clearance 
for 0 0.25af f= =  and 0.03ς =   

The piecewise full decoupling method is applied to the three-degree-of-freedom semi-
definite system with two clearances. The periodicity of the steady state response is 
investigated comparing the steady state and effective amplitudes. If the steady state amplitude 
coincides with the effective amplitude, the response is periodic; otherwise the response is 
nonperiodic. The frequency response, that is, the steady state and effective amplitudes versus 
the nondimensional frequency is shown in Figure 2. The results are in agreement with those 
obtained by the finite element in time method 3. 
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Figure 2: Frequency response of the three-degree-of-freedom semi-definite system with clearances for 
, , [ ]T0 0.5 0.25=f [ ]T0.25 0a =f 11 12 21 22 0.05ς ς ς ς= = = = , 12 21 0.6ω ω= =  and 22 1.1ω =  

 (  steady state amplitude , D  effective amplitude ) i 1̂q 1efq

6 CONCLUSIONS 
The piecewise full decoupling method is a robust numerical procedure of explicit 

integration for predicting the steady state response of piecewise linear dynamical systems 
under periodic excitations. The method is based on the classical method of piecing the exact 
solutions. The accuracy of method does not significantly depend on a magnitude of the 
integration step, since the response inside local domains are obtained by employing analytical 
solutions. The time step has to be sufficiently small for the reliable numerical determination 
of the switching points. It is a remarkable advantage with respect to other explicit integration 
methods such as Runge-Kutta, etc. 
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