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Summary. A macroscale fracturing process which results from microscale damaging is
discussed on a basis of a homogenization theory under the microscale strong discontinuity
kinematics. It is also pointed out that the development of microcracks is a mechano-
chemical coupling process of the siloxane materials under water existence, that is, a hy-
drolysis process of silicate minerals.

1 INTRODUCTION

Microcrack development and propagation controls the fracturing behavior of crystalline
rocks (see Figure 1). Oliver1,2 showed that the onset and development of displacement
discontinuities can be represented by the concept of strong discontinuity. We here extend
the strong discontinuity model to a microscale one of the homogenization theory3 and
calculate the macroscale behavior.

Seeking for the reason of microcrack propagation under macroscopically constant stress/
strain condition, we next consider a mechano-chemical coupling procedure of siloxane
dissolution under water existence4,5, that is, a hydrolysis of silicate minerals, which is
schematically denoted as ≡ Si−O− Si ≡ +H2O ⇒ ≡ −Si−OH + OH− Si ≡ .

2 HOMOGENIZATION OF MICROCRACKS UNDER STRONG DISCON-
TINUITY

Let us consider a displacement field u(x, t) consisting of a continuous part ū(x, t) and
a jump Hϕ(x)[[u]](x, t) on a singular surface Σ (Figure 2):

u(x, t) = ū(x, t) + Hϕ(x)[[u]](x, t)
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where Hϕ(x) is the step function such as Hϕ = 0 ∀x ∈ Ω−, Hϕ = 1 ∀x ∈ Ω+. Note
that for applying the displacement boundary condition for the continuous part û of ū the
displacement is regularized as

u(x, t) = û(x, t) + Mh
ϕ(x)[[u]](x, t)

û(x, t) = ū(x, t) + φh(x)[[u]](x, t), Mh
ϕ(x) = Hϕ(x)− φh(x).

φh is a continuous function connecting Ω− and Ω+ through a neighborhood Ωh of Σ.
An isotropic damage model with the damage parameter d is introduced after onset of

the displacement discontinuity (Figure 3):

σ̇ij = CD
ijkl ˙εkl

Unloading: ḋ = 0, CD
ijkl = (1− d)Cijkl

Loading: ḋ 6= 0, CD
ijkl = (1− d)

(
Cijkl − 1

1 + H

τ0

(τσ)3
σijσkl

)

We next apply a homogenization method2 for the incremental equilibrium equation
under a perturbation for the incremental displacement u̇ε

i as

u̇ε
i (x) = u̇0

i (x
0,x1) + εu̇1

i (x
0,x1) + ε2u̇2

i (x
0,x1) + · · ·

where x0 and x1 are the global and local coordinate systems, respectively.
Substituting this into the governing equation, we get the following microscale equation
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where χrs
k is the characteristic function, and the macroscale equation is obtained as
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+ ḟH = 0,

CH
ijkl =

1

|Ω1|
∫

Ω1

CD
qnpm(x1)

(
δqiδnj −

∂χij
q

∂x1
n

)(
δpkδml −

∂χkl
p

∂x1
m

)
dx1.

A finite element scheme is introduced for solving the microscale and macroscale prob-
lems. A numerical result is given in Figure 4 for the averaged stress and strain response,
and in Figure 5 for microcrack propagation in the local unit cell.

3 WATER TRANSPORT

It is known that microcracks in rock are gradually developed even under loading less
than 30% of the uniaxial strength. This may be caused by a mechano-chemical coupling
procedure of siloxane dissolution under water existence. Thus, the time-delaying of mi-
croscale fracturing is mainly controlled by the water transport and stress intensity at the
crack tip.
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Water transport is written by the Navier-Stokes equation. The partially-saturated
water flow in a single crack is discussed by Bui et al.6 together with the stress intensity
factor accounting for the moving crack tip and capillary effects. On the other hand,
if a homogenization procedure is applied for a porous media flow problem, the seepage
equation is eventually obtained7. Thus, for the locally distributed crack problem we will
be able to develop a homogenized seepage equation together with the mechano-chemical
effect. Note that the mechano-chemical-thermal effects for silicate minerals are discussed
by Beeler and Hickman4 for fracture closure behavior of a single crack developed in a
quartz crystal, and by Lehner and Leroy5 for pressure solution of sandstone grains.

4 CONCLUSIONS

• Microscale crack development of crystalline rock can be simulated by a homoge-
nization theory under the microscale strong discontinuity kinematics concept. A
numerical example is shown in Figure 4 and 5.

• Time-dependent microcrack development is controlled by a mechano-chemical cou-
pling procedure of siloxane dissolution under water existence. A coupled mechano-
chemical-thermal homogenization analysis is required.
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Figure 1: Laser microscope observation of microcrack development in granite before and after loading (Q: quartz, 

F: feldspar) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Discontinuity surface Σ. 
Figure 3: Damage model (Oliver

1
) 

Figure 4: Averaged stress-strain relation. Figure 5: Unit cell and microcrack development. 


