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Summary. In this paper, the Extended Finite Element Method [1] is used for modelling
cohesive and non-cohesive cracks in brittle materials. For the determination of the direc-
tion of crack propagation as well as of the length of new crack segments a global energy
based criterion is used. The numerical assessment of the model includes comparisons of
crack paths obtained from non-cohesive analyses and from analyses using stress intensity
factors. Furthermore, the influence of the interface law is investigated.

1 INTRODUCTION

Numerical analysis of cracks in quasi-brittle materials require models which adequately
represent the discontinuous character of the problem. In this paper, the Extended Finite
Element Method [1] is used for modelling cohesive as well as non-cohesive cracks in brittle
materials. Numerous investigations by different authors have shown that the Extended
Finite Element Method is capable of simulating cracking and crack propagation inde-
pendent of the discretization of the finite element mesh [1, 2, 3]. The X-FEM was first
introduced in the context of linear elastic fracture mechanics [1] and has been extended
for the modelling of cohesive cracks [3, 2].

In the proposed model, cohesive cracks are considered by introducing modified enrich-
ment functions to enhance the resolution of the displacement field in the vicinity of the
crack tip and by the Sign function if elements are fully penetrated by cracks. In contrast
to the enrichment functions used in Linear Elastic Fracture Mechanics [1], the proposed
functions do not exhibit stress singularities but yield bounded values of stresses at the
crack tip.

The analysis of crack propagation using discrete crack models crucially depends on the
crack growth criterion. Incorrect predictions of the crack propagation direction may lead
to locking and, consequently, to unreasonable results. In this paper, a global energy based
criterion, proposed in [4], is extended to determine simultaneously the direction of crack
propagation and the length of new crack segments. Starting from a variational formula-
tion in terms of the displacements, the direction and the length of new crack segments,
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a coupled format of the discretized tangential algebraic equation system analogous to
multifield problems is solved simultaneously by means of the Newton iteration scheme.

2 EXTENDED FINITE ELEMENT MODEL

The displacement field u of a cracked body B can be decomposed into a continuous
part ū and a discontinuous part ǔ

u(x) = ū(x) + ǔ(x), ∀ x ∈ Ω, with ǔ(x) = Ss(x) û(x), (1)

where ū and û are continuous functions in the domain Ω and Ss is the Sign function
defined on the crack surface ∂sΩ [1].

In the X-FEM the Partition of Unity Method is used to locally enhance the displace-
ment approximation where a crack has opened. In the presented formulation not only
the Sign function but also the crack tip functions {Fi}, as proposed by [1], are used to
enhance the approximation of the displacement field in the cracked solids:
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θ and r are the local polar coordinates at the crack tip. Using crack tip enhancement
functions, crack tips do not have to be located on element boundaries, but can be located
arbitrarily in the finite element mesh. For the simulation of non-cohesive crack growth
the function f(r) is defined as f(r) =

√
r [1]. In contrast, for the simulation of cohesive

crack growth, characterized by bounded stress states at the crack tip, a linear function
f(r) = r is used [4, 5]. An interface law as suggested by [3] is employed for the cohesive
crack model.

Using standard finite element shape functions as a partition of unity, a finite element
approximation which includes three parts - the standard finite element approximation,
the Sign function Ss and the crack tip enhancement functions {Fi} - can be written as

u =
nr
∑

i=1

Ni u
er
i +

nc
∑

i=1

NiSs uec
i +

nt
∑

i=1

4
∑

j=1

NiFj uet
ij , (3)

where uer
i are the regular degrees of freedom, uec

i are the enhanced degrees of freedom as-
sociated with the Sign function Ss and uet

i are the enhanced degrees of freedom associated
with the crack tip enhancement functions Fj.

3 ENERGY BASED MODELLING OF CRACK PROPAGATION

The basic assumption of the proposed energy based crack model is that the fracture
process is governed by a minimization of the total potential energy Π of the structure.
The necessary condition for a minimum of the total potential energy is that the first
variation vanishes:

δΠ(u, rc, θc) =
∂Π(u, rc, θc)

∂u
δu +

∂Π(u, rc, θc)

∂rc
δrc +

∂Π(u, rc, θc)

∂θc
δθc = 0 . (4)
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a) b)

Figure 1: Numerical analysis of an L-shaped panel: a) crack paths from LEFM-based analyses using K-
factors (thick line) and the proposed energy-based criterion (thin line); b) crack paths from the cohesive
crack model using a mode I (thick line) and a mixed mode interface law (thin line)

This leads to a global system of equations which is enhanced by two additional global
degrees of freedom associated with the crack growth direction θc and the length of the new
crack segment rc. The derivatives of the total potential with respect to the additional
degrees of freedom θc and rc are calculated numerically. In the end the global energy
based criterion leads to a coupled stiffness matrix K and the internal load vector f int

which have the general format:
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. (5)

4 NUMERICAL ASSESSMENT

For the numerical assessment of the proposed method, a L-shaped panel [6] is used as
a benchmark example. Two analyses were based upon linear elastic fracture mechanics
(LEFM). In one analysis the crack direction was calculated using the stress intensity
factors according to LEFM while in the second calculation the proposed global energy
criterion has been applied. The calculated crack paths shown in Figure 1a) are almost
identical.

Two additional analyses were based upon the cohesive crack model (Figure 1b): In
one analysis, no transfer of shear stresses along the crack faces is taken into account. In
another analysis, a mixed mode interface law [3] is used. Figure 1b) demonstrates, that
the chosen interface law has a considerable effect on the calculated crack path. In contrast
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to the mode-I analysis (thick line), the crack path calculated with consideration of the
mixed mode-model (thin line) lies perfectly within the range of the experiments.

5 CONCLUDING REMARKS

A global energy criterion originally proposed for the determination of the crack prop-
agation direction in the context of the Extended Finite Element Method [4] has been
extended to the simultaneous determination of the direction as well as of the length of
propagating crack segments. Minimization of the total energy of the structure leads to
a coupled problem solved for the displacements, the crack direction and the segment
length. It was shown, that for LEFM, the computed crack path is identical with the
classical maximum circumferential stress criterion using KI and KII . It also has been
shown, that consideration of mixed mode in the interface law is crucial to obtain realistic
paths of propagating cracks.
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