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Joris J.C. Remmers?, René de Borst?,† and Alan Needleman‡

? Faculty of Aerospace Engineering, Delft University of Technology,
NL-2600 GB Delft, The Netherlands.

† LaMCoS - UMR CNRS 5514, I.N.S.A. de Lyon, F-69021 Villeurbanne, France.

‡ Division of Engineering, Brown University, Providence, RI, 02912, U.S.A.

Key words: Cohesive zones, partition of unity method, crack branching

Summary. In the cohesive segments method, the nucleation, growth and coalescence of

cracks is modelled by incorporating multiple cohesive zones in continuum elements by using

the partition-of-unity property of finite element shape functions. In this contribution, the

possibility of simulating crack branching is demonstrated by a small example.

1 INTRODUCTION

In the cohesive approach to fracture, the region in which the separation and the dissipa-
tive process take place is concentrated in a single plane with zero thickness: the cohesive
zone. The opening of this cohesive zone is governed by an additional constitutive relation
which characterises the fracture process of the material. The cohesive and bulk con-
stitutive relations, together with the appropriate balance laws and boundary conditions
completely specify the problem. Fracture, if it takes place, emerges as a natural outcome
of the deformation process.

Cohesive zones can be incorporated directly in continuum elements as a jump in the
displacement field by exploiting the partition-of-unity property of the finite element shape
functions [1]. The magnitude of the displacement jump is governed by additional degrees
of freedom that are added to the nodes that support the element that contains the cohesive
zone. In this technique, a cohesive zone can be extended during a simulation in any
direction, irrespective of the structure of the finite element mesh.

A drawback of the current implementation of the partition of unity approach to cohesive
fracture is that the crack is regarded as a single entity. Crack propagation is simulated
by extending an existing discontinuity. In the cohesive segments method [2, 3], which is
based on the partition of unity approach, crack nucleation can be simulated by inserting
multiple cohesive zones of finite length, in any position in the mesh. Since each cohesive
segment is supported by a unique set of degrees of freedom, the coalescence of multiple
cracks and crack branching can be accounted for as well. As a result, the method can
be used to simulate diffuse fracture phenomena which arise for example in heterogeneous
materials.
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Figure 1: Domain Ω with two discontinuities, Γd,1 and Γd,2 (dashed lines). It is assumed that the
discontinuities do not cross.

2 KINEMATIC RELATIONS

The key feature of the cohesive segments approach is the possible emergence of multiple

cohesive zones in a domain. Consider the domain Ω with boundary Γ as shown in Figure 1.
The domain contains m discontinuities Γd,j, where j = 1...m. It is assumed that the
discontinuities do not cross. Each discontinuity splits the domain into two parts, which
are denoted accordingly as Ω−

j and Ω+
j . The displacement field in the domain Ω consists

of a continuous regular displacement field û plus m additional continuous displacement
fields ũj:

u(x, t) = û(x, t) +

m∑

j=1

HΓd,j
(x)ũj(x, t) , (1)

where x denotes the position of a material point, t is time and HΓd,j
is a Heaviside step

function associated to the discontinuity Γd,j, which is equal to 1 when the material point
resides in Ω+

j and 0 otherwise.
The strain field in the bulk can be found by taking the spatial derivative of the dis-

placement field (1). The magnitude of the displacement jump at the discontinuity Γd,j,
which represents the opening of the cohesive zone, is equal to the additional displacement
field ũj. The stress field in the bulk material and the tractions at the cohesive zone can
be obtained using regular constitutive relations in combination with the strain field and
displacement jump, respectively. The discontinuous displacement and strain fields can
be discretised in the space domain by using the partition-of-unity property of the finite
element shape functions [4].

3 IMPLEMENTATION

In the current implementation of the cohesive segments method, a distinction is made
between different stages of crack growth, such as the nucleation of a new crack, the
extension of an existing crack and the coalescence of cracks. It will be demonstrated that
according to this scheme, crack branching is accounted for automatically.

In all situations, the same criterion is used to determine when and in which direction
a cohesive segment must be created or extended. In this criterion, an equivalent stress
is determined for arbitrary orientations in the domain [5]. The orientation for which
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Figure 2: (a) Nucleation of a single cohesive segment. The segment (bold line) passes through the
integration point (⊗) where the fracture criterion is violated. (b) Extension of a cohesive segment. (c)
Coalescence of two cohesive segments. Segment A is extended until it touches segment B. (d) Crack
branching. A new segment is added trough an integration point where the fracture criterion is violated.

the equivalent stress reaches a maximum is obtained by solving a minimisation problem.
When this maximum equivalent stress exceeds the ultimate value, the cohesive segment
is created or extended in the direction of the corresponding direction. An important
advantage of this criterion over a principal stress criterion is that the contribution of the
shear stress can be scaled and that compressive normal stresses can be excluded.

When the stress state in an integration point in the bulk material violates the fracture
criterion, a new segment is created. The segment is taken to extend throughout the
element to which the integration point belongs and into the neighbouring elements, see
Figure 2(a). The magnitude of the displacement jump is determined by a set of additional
degrees of freedom which are added to all nodes whose support is crossed by the cohesive
segment. The nodes of the element boundary that is touched by one of the two tips of
the cohesive segment are not enhanced in order to ensure a zero opening at these tips [1].
Subsequently, the evolution of the separation of the cohesive segment is governed by a
decohesion constitutive relation in the discontinuity. When the criterion for the initiation
is met at one of the two tips, the cohesive segment is extended into a new element, as
demonstrated in Figure 2(b).

The possibility of coalescing cracks is demonstrated in Figure 2(c). Segment A is
only extended until it touches segment B, which can be regarded as a free edge. This
implies that there is no crack tip, so that all four nodes of the element in which the
two segments meet are enhanced twice. Crack branching will follow automatically from
previous scenario’s. When the criterion for crack nucleation is met in the vicinity of
an existing crack, a new cohesive segment is created, taking into account the special
regulations for coalescing segments, see Figure 2(d).

4 NUMERICAL EXAMPLE

The cohesive segments method has been implemented in both a quasi-static and an
explicit dynamic model [3]. The latter model is used to analyse the problem shown in
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Figure 3: (a) Geometry and loading conditions of specimen. (b)-(d) Deformed specimen.

Figure 3. A specimen composed of two different isotropic elastic materials is subjected
to a pulse load in vertical direction, Fig. 3(a). The stiffness of material II is four times
as big as the stiffness of I. The ultimate traction of the relatively weak interface is 0.75
times the ultimate traction of material I. The interface, which is modelled by a cohesive
segment that is placed in the mesh a priori, has partially debonded over a small distance.

Upon loading, the interface crack starts to grow. At a given moment, the stresses in
material I have built up such that a new crack is nucleated, see Figure 3(c). This branch
arrests soon after and the interface continues to debond away from the point where the
branch was formed.

5 CONCLUSIONS

The cohesive segments method allows to simulate complex fracture phenomena, includ-
ing coalescence and branching of cracks in a mesh-independent way. The method has been
demonstrated by an example in which the branching of an interface crack is simulated.
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