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Summary. The paper presents elliptical Coulomb law where the friction surface is defined 

with two principal friction coefficients and corresponding direction, what enables description 

of surfaces showing biaxial frictional response. The Moving Friction Cone formulation is 

based on the contact constraint described using a single gap vector that enables significantly 

simpler, shorter and faster element code. 
 

 

 

1 INTRODUCTION 

Materials showing different friction intensity regarding sliding direction, e.g. contact with 

composite surfaces or contact with surfaces showing unidirectional roughness can be modeled 

using an elliptical frictional surface law. The Coulomb cone, characterized by a single friction 

coefficient can be modified by creating an elliptical surface defined by two principal friction 

coefficients, 1 1tgµ α=  and 2 2tgµ α=  (Fig. 1) and the corresponding angle ϕ  defining the 

orientation. The Moving Friction Elliptical Cone (MFEC) formulation is derived from the 

Moving Friction Cone (MFC) formulation 
1,2

. Generally, when describing a contact between 

two 3D bodies, the master-node to slave-surface approach based on the contact constraint in 

the form of normal and tangential gap is often used. Contrary to this, in the MFC formulation 

the contact constraint is defined using a single gap vector (Fig. 2). In the case of stick, the 

spring-back effect of the elastic-like behavior is characterizing the case when the slave node is 

still within the Coulomb frictional cone. For the slip case the cone is moving to the position 

where the slave node on the surface is evaluated from the fact that the gap vector is 

perpendicular to the normal on the Coulomb cone surface. Thus, the spring-back effect is 

again pushing the penetrated slave node back to the master surface. 
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Figure 1: The elliptical Coulomb cone  Figure 2: The definition of gap vector 

2 THE CONTACT GEOMETRY DESCRIPTION 

Based on a tetrahedral continuum element, a flat triangular contact surface (Fig. 3) is 

defined within the current configuration 
1 1n n+ += +x X u  in the parametric form as: 
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(1) 

Supposing the known solution point for the last converged stage ( ),m n n nξ ηx  (defined by 

parameters ,n nξ η  for time t=tn), the solution point is mapped to the current configuration 
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(2) 

The contact condition is formulated as: 

( )1 1, 0S n n n nξ η+ +⋅ ≤g n ,   ( ) ( )1 1 1 3 1 2 1 3 1n n n n n+ + + + += − × −n x x x x , (3) 

where the elastic gap vector ( )1 ,S n n nξ η+g
 is defined between the slave node 1S n+x

 and the last 

converged stage in the current configuration, i.e. ( ) ( )1 1 1, ,S n n n S n m n n nξ η ξ η+ + += −g x x
. In the case of 

contact the stick case is supposed to occur and the trial traction vector is defined as: 

( ) ( )1 1, ,tr

n n n S n n nξ η ε ξ η+ +=t g , (4) 

where ε  is a constant penalty parameter. Projection of the trial traction vector in the normal 

and tangential direction defines the normal pressure and the trial traction vector 

( ) ( ) 1
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. (5) 

When the components of trial traction vector are defined, the supposed (trial) stick state can 

be verified by checking the elliptical Coulomb criterion 
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(6) 

where ϕ  is the angle between the principal axis vector µp  (defines the direction of principal 

friction coefficient 1µ ) and the sliding direction vector 
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Figure 3: The principal axis direction  Figure 4: The perpendicularity condition  

If relation (6) is not satisfied, sliding occurs. The new position of the cone, i.e. of the cone's 

tip ( )1 1 1,
m n n n

ξ η+ + +x
, is evaluated from the perpendicularity condition (Fig. 4) 
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(8) 

and the additional condition 

( )1 1 1 1 1, 0S n n n S n nξ η+ + + + +
 × ⋅ = g t n , (9) 

where ( ) ( )1 1 1 1 1 1 1, ,S n n n S n m n n nξ η ξ η+ + + + + + += −g x x  is the elastic gap vector. To solve this relation a 

Newton-Raphson iterative procedure is performed within the each iteration. 

3 THE DEFINITION OF THE RESIDUAL VECTOR AND THE TANGENT 

MATRIX 

In the case where no sliding occurred, i.e. stick, the residual vector and the tangent matrix 

are obtained explicitly. The residual vector and the tangent matrix for the stick case are:  
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(10) 

For the case when sliding occurred, the new solution parameters 
1 1,n nξ η+ +

 are evaluated using 

the Newton-Raphson procedure. The residual vector is defined as: 
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When linearising the tangent matrix (11), the Newton-Raphson procedure of relations (8) and 

(9) has to be taken into account such that 
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(12) 

4 NUMERICAL EXAMPLE 

Using the same sliding cube example
1,2

, the MFEC (µ1=0.1, µ2=0.08) results for φ=0°, 

φ=45°, φ=90° are compared with the MFC formulation when µ=0.1 and µ=0.08. The total 

tangential reaction for the nodes where the cube is clamped and moved is depicted in Fig. 6.  

   

 

Figure 5: The sliding cube    Figure 6: The total tangential reaction  

5 CONCLUSIONS 

The significant simplification of this single gap vector in the MFEC/MFC approach is 

reducing the code size and the complexity of a contact element what results into the faster 

contact element routine and the better overall performance of the simulation. The use of a 

single penalty parameter reduces the effort of finding proper penalty parameter such that 

penetration is minimal and ill-conditioning is avoided. 
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