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Summary. Mathematical modeling of the impact of a solid body upon a buffer positioned on a 
thin isotropic plate, whose dynamic behaviour is described by the Uflyand-Mindlin wave 
equations taking the rotary inertia and shear deformations into account, is investigated. Two 
types of the isotropic plate are considered in the present paper: elastic and viscoelastic. The 
buffer represents a steel screw cylindrical spring and a liquid damper connected with the spring 
consecutively. Wave equations allow to assume that in a plate the transient wave of transverse 
shear, because of which there is a deformation of a plate material outside of contact area, is 
generated with final velocity. As a method of the decision the ray method and method of splicing 
asymptotic expansion received for small times in a contact area and outside of it are used.  

1 INTRODUCTION 

The transverse impact of a viscoelastic impactor on an elastic shallow spherical shell was 
investigated in the paper [1]. Impactor represents a rigid body of mass m and viscoelastic 
Maxwell’s element, which one end is connected with the mass and another end impacts upon 
the shell. The shell of the final sizes was considered, which behaviour was described by the 
classical system of the equations based on Kirchhoff-Love hypotheses.  

The problem with the similar calculating scheme is considered in the present paper, a non-
classical plate of the unlimited sizes is used as a target, whose dynamic behaviour is described 
by the Uflyand-Mindlin equations, taking the rotary inertia and transverse shear deformations 
into account, the behaviour of the viscoelastic buffer is described by the Maxwell model. The 
wave approach based on splicing on the border of the solution contact area for required 
function inside a contact disk and outside of it, is used for the problem solution [2,3]. 

2 PROBLEM FORMULATION AND GOVERNING EQUATIONS 

A rigid body with the mass m comes closer with the velocity V0 to the free end of a buffer, 
whose another end is clamped in the center of a circular isotropic plate. It is assumed that the 
sphere moves along the buffer’s axis, which is perpendicular to the plate (Fig.1). The 
viscoelastic buffer does not lose its stability during deformation, its stiffness is expressed in 
terms of the operator, and thus the relationship for contact force takes on the integral form 
with a function of the relaxation for Maxwell’s model. 
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Fig. 1 Scheme of the shock interaction of a body and a viscoelastic buffer embedded into a plate 

The dynamic behaviour of the elastic isotropic Uflyand-Mindlin plate behind the nonstationary 
elastic wave’s fronts is described in the polar coordinates by the following equations [2]: 
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where r

 

and 

 

are the polar radius and angle, respectively, Ì r and Ì

 

are the bending 
moments, Qr is the transverse force, Br is the angular speed of the normal to the plate’s middle 
surface in direction r, W is the lateral displacement velocity, 

 

is the density, h is the plate 
thickness, D = Eh3/12(1

 

2), E is the modulus of elasticity, 

 

is Poisson's ratio, 

 

is the 

shear modulus, Ê = 

 

2/12, and an overdot denotes a derivative with respect to time t. 
In the present paper the viscoelastic plate is also considered. Viscoelastic properties of the 

plate’s material under shear deformations are described by the representation of the shear modulus 
and Young’s modulus in terms of the operator, and the Hooke’s law takes on the integral form 
with an arbitrary kernel of relaxation, in so doing Poisson's ratio does not depend on viscoelastic 
properties of the material. For viscoelastic plate equations (2) will be represented in form 
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g(t) is the relaxation 

function for Maxwell’s model, 

 
is the time of relaxation of the plate, t

 
- variable of the 

integration, Å

  
è

  
– nonrelaxational magnitude of the Young’s modulus and Poisson's ratio, 

accordingly. 

3 RECURRENT RELATIONS OF THE RAY METHOD 

Assume that as a result of the dynamic action on a plate, a cylindrical wave 

 

of a strong 
or weak discontinuity propagates in the plate, in the form cylindrical surfaces-strips are 
circumferences extending with the normal velocities G( ) (indices 

 

take on the values 1 and 
2). The solution for the desired function Z (r,t) behind the front of the wave surface 

 

is 
constructed in terms of the ray series [2,3] 
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where [Z,(k)]=Z +,(k) 

 

Z -,(k)=[

 

kZ/

 

t k] are the jumps of the kth derivatives of the function Z 
with respect to time on the wave surface , i.e. at t=(r r0)/G

( ), r is the polar radius, r0 is the 
initial radius, and H(t) is the unit Heaviside function. 

To determine coefficients of the ray series (6) for the desired function Z, it is necessary to 
differentiate Egs.(1-2) for the elastic plate or Eqs (1) and (3-5) for the viscoelastic plate k 
times with respect to time, take their difference on the different sides of the wave surface 

 

, 
and apply the condition of compatibility for the physical components of the value [2] 
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where / t is the 

 

- derivative with respect to time. 
As a result from the equations of motion (1) for the viscoelastic plate, we obtain 
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where (k)=[

 

,(k)] 

 

,  X(k)=[W,(k)] ,  b=K hD -1, t g t

 

is the kernel of relaxation, 

1 1kF

 

and 2 1kF

 

is the values dependent from discontinuities k-1th of the order. 

When deducing Eqs. (8-9), it should be considered the axially symmetric character of the 
problem and, in consequence, wave characteristic independence from the angle . Then from 
Eqs. (8-9) at k = -1, 0, 1…3 one can find the discontinuity for the first and second waves, 
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allowing us to write the expressions for the desired functions W and Qr in terms of the 
truncated ray series with an accuracy to constant integration.  
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where y  = t  (r  r0)G
( )-1, and the values )(

)k(X and )(
)k(  are calculated at y =0. 

At 0 0 , from Eqs.(8-11) we obtain expressions for the elastic isotropic plate. 

4 GOVERNING SYSTEM OF THE EQUATIONS 

The process of interaction of the rigid body with the buffer and the plate can be described 
by the following equations [3]: 

m y P t , 2
00 2 rh r w r Q P t , (12)

 

where ó= +w is the total displacement of the impactor which is the sum of the displacements 
of the spring’s upper end, , and the lower end, w, Qr  is the transverse force in the contact 
region and P(t) is the contact force for Maxwell’s model accepts the following kind 
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here E1 is the buffer’s elastic modulus, and 1 is the time of relaxation of the buffer. 
Substituting the values y and P(t) into Eqs. (12) and taking into account the condition that 

the tangent to the median surface of the plate should be horizontal in the contact region, we 
are led to the set of equations defining the process of the plate, buffer and impactor 
interaction. Substituting the relationships (10), (11) written down on the boundary of the 
contact region r = r0 and the degree series on time t for the function 

 

into Eqs. (12), and 
equating in the net equations the coefficients at equal powers of t, we obtain on each step 
three algebraic equations for determining three unknown constants 1( )

ic ,

 

2( )
ic (i = 0,1,2) and i 

(i = 0…4). After definition of constant integration it is possible to write down the dynamic 
displacement and contact force as truncated degree series with known coefficients at t. 
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