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Summary. This paper focuses on a new integration scheme for the von-Mises elastoplastic 
consitutive model. Based on a time continuous re-formulation of the original model a proper 
integration scheme which makes use of an integration factor and of exponential maps is 
introduced. A comparison with previous and well established algorithms, in terms of iso-error 
maps, shows the main optimality characteristics of the new method. 
 
1 INTRODUCTION 

The present study follows recent works1,3, regarding a family of exponential-based 
integration algorithms for von-Mises associative plasticity with linear kinematic and isotropic 
hardening. The key point of the innovative numerical scheme presented in this work is the re-
formulation of the original plasticity model as a quasi-linear dynamical system which can be 
approximated using exponential maps. The resulting exponential-based algorithm, differently 
from the one previously introduced2, is proven to be consistent with the yield surface 
condition, exact in case of proportional loading and of zero isotropic hardening as well as 
second-order accurate. 

 The main aim of the present paper is then to compare the new algorithm with more 
classical methods such as return maps based on backward and generalized midpoint 
integration schemes. 

2 TIME CONTINUOUS MODEL 
We consider an associative von-Mises elastoplastic constitutive model with linear 

kinematic and isotropic hardening in the small deformation framework4. Following a standard 
deviatoric/volumetric splitting of the stress tensor p= +σ s 1  and strain tensor ( )1 3 θ= +ε e 1  
the model equations are  
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p Kθ=  (1)

2 pG  = − s e e         (2)

= −Σ s α          (3)

yF σ= −Σ  (4)

p γ=e n  (5)

,0y y isoHσ σ γ= +  (6)

p
kinH=α e  (7)

0, 0, 0F Fγ γ≥ ≤ =  (8)

 
where K is the material bulk modulus, G is the shear modulus, ep is the traceless plastic strain, 
Σ is the relative stress, α is the backstress, F is the von Mises yield function, n is the normal 
to the yield surface, yσ  is the yield surface radius, ,0yσ  the initial yield stress,  Hkin and Hiso 
are respectively the kinematic and isotropic hardening moduli. Finally, Equations (8) 
represents the well known Kuhn-Tucker conditions. In what follows it is assumed that when 

0γ =  the system is in an elastic phase while, when 0γ >  the system is in a plastic phase. 

3 RE-FORMULATION AND INTEGRATION ALGORITHM 
The stated problem can be put into a different form by combining Equations (2) and (3), 

deriving with respect to time and subsequently introducing Equations (5) and (7) respectively. 
Such calculations lead to the definition of  the following integration factor 
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        (9)

which actually describes the evolution of the yield surface σy. Defining a generalized stress 
vector by means of 

0

0 0

s
yX

X X
σ   

= =   
   

Σ X
X  

 
(10)

it is possible to reformulate the initial dynamical system in terms of the time derivative of 
vector (10). The form of this evolution law is the following 

=X XA  (11)
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with the matrix A depending on the X vector and on the actual phase 

elastic phase2
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= 0 e
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(12)

T plastic phase2
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 
 
 

= 0 e
e 0A  

 
(13)

The solution of Equation (11) can be approximated using exponential maps in each numerical 
time step. A detailed description of the new optimal exponential-based algorithm (in the 
sequel labelled as ESC2) and the full derivation of  system (11) can be found in Reference3. 

4 NUMERICAL TESTS 
In Figure 1 and Figure 2 we present iso-error maps4 assuming a uniaxial elastic path up to 

yielding as starting point. We compare the following four algorithms: 
MPT  : the generalized midpoint method5 
ESC2

    : the new exponential-based method derived from formulation (11) 
ESC  : the previously introduced non consistent exponential-based method2  
RM    : the well established and performing radial return map method4 

The material properties adopted are E = 7000 N/m2, ν = 0.3, σy,0 = 24.3 N/m2,  Hiso = 225 
N/m2,  Hkin = 0 N/m2. 
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Figure 1: Iso-error maps: MPT and ESC2 schemes. 
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Figure 2: Iso-error maps: RM and ESC schemes. 

It is assumed that each loading history is driven by controlling the increments of the ε11 
and ε22 strain components while the remaining stresses are kept zero. It is evident that the 
error levels provided by the new ESC2 scheme are lower than the ones given by the MPT and 
the RM methods and that the new method presents zero error for proportional loading, while 
this does not hold true for the previous exponential-based ESC scheme. 

5 CONCLUSIONS 
We have presented a new exponential-based integration algorithm for von-Mises plasticity 
with linear hardening. The new scheme is competitive with more established methods and 
results exact in case of proportional loading and constant yield surface. Numerical tests 
show that the new procedure grants second order accuracy and a low error level even for 
large time step sizes.  
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