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Summary. This paper presents a hardening relation which takes into account strain, strain rate 
and temperature is effect to predict precisely the thermoviscoplastic behaviour of material with 
BCC microstructure. Moreover, an algorithm to integrate the thermoviscoplastic constitutive 
equations, including the hardening law, is proposed to implement via a subroutine the previous 
constitutive relation in a commercial finite element code as ABAQUS/Explicit. Finally, this tool is 
used to simulate the problem of a ring expanding radially in a broad range of strain rates, covering 
both low and high initial velocities.  
 

1 CONSTITUTIVE RELATION 
To predict the thermoviscoplastic behavior of our material a thermoviscoplastic constitutive 

relation has been developed taking into account hardening, strain rate and temperature sensitivity. 
This formulation is based on the process of thermal activation. Thus, in this formulation the stress 
of plastic flow is presented in an additive form generally used for BCC microstructure: 
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where µσ  and *σ  are respectively the internal and the effective stress component. The first term is 
directly related to the strain hardening of the material and the second defines the contribution of 
thermal activation (combination of temperature and strain rate). )T(E is of the Young's modulus as a 
function of temperature. The explicit form proposed to define the two stress components is inspired 
by the physical approach via the theory of thermal activation. The components  are given by the 
following expressions: 
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where 0ε  is the strain characterizing the yield stress, ( )T,B ε  and ( )T,n ε  are respectively the modulus 
of plasticity and the strain hardening exponent, cε  is the critical strain rate, experimentally obtained 
and typically very low, *m  is the coefficient that characterizes the temperature and strain rate 
sensitivity, 1D  is the material constant, *

0σ  is the effective stress at K 0T =  and maxε  is the maximum 
strain rate limiting the validity of the model.  
 

To take  into account the temperature increase for each step of plastic deformation, the heat 
equation is used. The temperature rise slows the propagation of the two waves, inducing, at large 
strain rates, a trapping of the plastic wave and a localisation of deformation. Hence the decrease of 
the Young’s Modulus with temperature is considered in the constitutive model and both the 
hardening exponent and the modulus of plasticity in the internal stress account for thermal (and 
strain rate) effects throughout the following expressions 
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where 0n  is the strain hardening exponent at K0T = , 2D  is a constant, minε  and maxε  are the 
minimum and maximum strain rates assumed in the model, 0B is a constant and ν  is the temperature 
sensitivity.  
 

Several experimental comparisons have been reported in [1] in term of temperature and 
strain rate sensitivity. A comparison has been also performed between several others constitutive 
relations [1]. The advantages of this model is the low number of constants which is equal to eight 
and the possibility to obtain the analytical expression of the first derivative necessary to define the 
yield surface evolution as it will be discussed in the following part.   

2   CONSISTENCY ALGORITHM 
 
The proposed algorithm follows the consistency approach to viscolpasticity proposed by Wang, 
Sluys and de Borst [2]. Contrary to the overstress models, these authors included rate effects in the 
yield function, so that the consistency condition and the Kuhn-Tucker complementary conditions 
could be satisfied. The aim of the algorithm herein described [3] is to include thermal effects in the 
consistency viscoplasticity model and to develop a robust algorithms to integrate it, keeping in mind 
that in dynamic applications the spatial configuration of the solid commonly diverges from the 
material one and a large deformation frame has to be considered. To integrate the constitutive 
equations, incremental objectivity is achieved by rewriting them in a rotated configuration. Within 
this configuration, all rate equations are form-identical as they were in the spatial one, and the 
classical return mapping algorithm for small deformation is proposed to solve them. Once the 
updated stress has been obtained, it is pushed to the spatial configuration. Next, the small 
deformation part of the algorithm is described. Correction to the trial stress is performed at time n+1 
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retσ∆  and Tσ∆  are given by: 
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 1 13  ret
n nG sσ λ σ+ +∆ = − ∆                             3T K TIσ α∆ = − ∆                              (7) 

 
where G  and K  are the shear modulus and the bulk mudulus, 1nσ +  the updated equivalent stress, 
λ∆  the plastic multiplier increment and 1ns +  is the updated deviatoric stress tensor given by:  

 

 1 1 1 13  trial
n n n ns s G sλ σ+ + + += − ∆                                                 (8) 

 
An implicit rule is also used to approximate the temperature increase 
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According to the consistency model, the yield condition is forced to be satisfied 
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If using a Newton-Raphson to solve this equation, the iterative increment of δλ  could be calculated 
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being H the plastic modulus, S the strain rate sensitivity and T the thermal sensitivity 
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3    APPLICATION TO RING EXPANSION 
 

The behaviour of materials at high strain rates could be determined by conventional dynamic 
tests such as tension, compression or shear, although only the last one allows to reach large 
deformations, close to. Among other non-conventional tests, the impulsive expansion of a thin ring 
allows to reach also large plastic strains. In this test, the inertia effect provides a force resisting the 
localization of strain as a necking plastic flow instability tries to form. Moreover, the solid exhibits 
a dynamic uniaxial stress state along the circumference without the wave propagation problems 
arising in tensile tests [4]. To show the performance of the thermoviscoplastic approach, a 
numerical analysis of the expansion of a mild steel ring with of 50 mm diameter, 1 mm thickness 
and a cross section of 1 mm2, submitted to a broad range of imposed radial velocities 

s/m500V1 0 ≤≤  and room initial temperature is presented. The numerical analysis was performed 
using the Finite Element commercial code ABAQUS/Explicit [5]. A mesh with 300 8-node trilinear 
reduced integration brick elements including hourglass control was used. 
 

The loss of homogeneous deformation triggers the neck development. Using the Considère 
instability criterion ( pσ ε σ∂ ∂ = ) and Equation (1) in adiabatic conditions, the plastic strain 
corresponding the onset of instability is 0.1neckε =  for a mild steel (hardening exponent 0.28on = ). 
For the same material, the strain at failure ( 0pσ ε∂ ∂ = ) is ten times greater and close to 

1.2failureε = . For brittle metals with lower values of the hardening exponent, the strain at failure is 
much lower. To arrive at a division of the ring through the development of fragments in the 
simulation, a failure criterion was considered consisting in a critical value of the equivalent plastic 
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strain p
failureε ε= . In this work he folowing relation between hardening exponent and failure strain 

was proposed 
 

 failure onε λ=                                                                (13) 
 

with 4λ = , which agrees with the value proposed by Triantafyllidis et al. [6]. This approach 
served to analyse the effect of the hardening exponent on the number of fragments.  
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Fig. 1. Effect of hardening value and  applied velocity on the number of fragments 

 
Thus, if the hardening parameter 0n  decrease, Eq. 4, the number of fragment N  increase 

inducing apparition of ductile-brittle transition, Fig. 1, as observed during experiments. 
 
 
CONCLUSIONS 
 
The combination of an original thermoviscoplastic model and an integration scheme was presented. 
It allows to simulate and study a variety of processes of dynamic loading and impact. Special 
attention was paid to the proposal of the constitutive relation which will allow to identify precisely 
the physical processes. As an example, the problem of ring expansion was analyzed, in which the 
hardening and velocity strongly affects the number of fragments. 
 
 
REFERENCES 
[1] A. Rusinek, R. Zaera and J.R. Klepaczko, Material characterization of a mild steel and constitutive 
relation for a wide range of strain rates and temperatures for 3D numerical simulations (submitted to Int J 
Mech Sci 2005) 
[2] W.M. Wang, L.J. Sluys & R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-
rate softening, Int. J. Numerical Methods in Engineering 40 (1997), pp. 3839-3864 
[3] R. Zaera, J. Fernández-Sáez, An implicit consistent algorithm for the integration of thermoviscoplastic 
constitutive equations in adiabatic conditions and finite deformations, Int. J. Solids Structures (accepted for 
publication) 
[4] 1. X. Hu & G.S. Daehn, Effect of velocity on flow localization in tension, Acta Mater. 44 (1996), 1021-
1033 
[5] ABAQUS/Explicit User Manual volumes I and II, version 6.4.1, Hibbitt, Karlsson & Sorensen, 
Inc., (2004) 
[6] N. Triantafyllidi, J.R. Waldenmyer, Onset of necking in electro-magnetically formed rings, J. of 
the Mechanics and Physics of Solids, 52 (2004), 2127-2148 


