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Summary. The aim of this work is to show the potential of the Particle Finite Element 
Method (PFEM) in the simulation of the powder transfer stage, in powder metallurgy 
industrial processes. The most innovative aspects of the work are:  a) the intensive use of the 
particle finite element method technology to trace the motion of a representative set of 
particles and b) the solution of inherent problems associated to the transfer information 
between different configurations. 

 
1 INTRODUCTION 

Although the finite element method1 is still one of the most powerful tools used in 
engineering analysis, it exhibits some disadvantages in problems where very large strains and 
displacements occur. These difficulties are related to the appearance of high mesh distortions 
typical of forming processes (metal machining, powder transfer, extrusion, rolling and others). 
As a consequence Jacobian determinants become negative at a number of sampling points 
during the process, and make impossible to continue the calculation. In order to overcome this 
problem, other techniques have been investigated. Recently, meshless methods combined 
with optimal connectivity generators, as Delaunay triangulations, have been successfully 
explored in Lagrangian fluid problems2. This technical combination is known as Particle 
Finite Element Method (PFEM).  

The method defines the continuum mechanics behavior of the solid in terms of a finite 
number of particles (of infinitesimal size) from which the behavior of the remaining particles 
is described by interpolation. The process of calculation, the actualization of the resulting 
fields and the setting of new initial conditions are repeated at each time step of the simulation. 
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2 NOVEL NUMERICAL STRATEGY. PFEM METHOD 

2.1 Problem formulation 

Let { }pi NiXB ...1:;=  a finite set of particles iX  that we select to model the continuum 
medium. Let ),( tXxx ii =  the particle position function, at time t , of the particle iX , and 

),( tXv i  and ),( tXa i  the velocity and acceleration vectors of the same particle. 
The associated dynamic problem consist of  finding the displacements field, , ),( tXu i  along  
time defined by the momentum equation (1). 

    0)()(int =−+ uFuFMa ext
    (1) 

 
 
 
 
 
  

 

Fig. 2.1 Initial and current configuration and connectivities on the same set of particles 
 
Completing the dynamic problem we consider the initial conditions 0, )0( uXu i = , 

0)0,( vXv i =  and 0)0,( aXa i = . Time integration is carried out by a standard Newmark 
integration method1, which that can be expressed as follows: 

    

[ ]
[ ]11

1
2

1

11111

)1(

2)21(
2
1

++

++

+++++

+−∆+=

+−∆+∆+=

=+

nnnn

nnnnn

ext
nnnnn

aatvv

aattvuu

FuKaM

γγ

ββ

  (2) 
 

where 1+nM  is the mass matrix, 1+nK  the stiff matrix, ext
nF 1+  are the external forces (volumetric 

and contact forces), t∆  the time step and βγ ,  are the Newmark integration parameters. 

2.2 Numerical strategy 
Once the new variable fields arisen from the calculation are known, their update is 

performed. For high deformation processes, if the reference connectivities are kept constant, 
the convected positions translate into highly distorted meshes. In order to avoid this problem, 
a new optimal connectivity must be computed. Keeping unaltered the representative particles 
of the domain, but considering updated spatial positions, its Voronoi diagram and Delaunay 
triangulations are carried out. The result is new particle connectivity that presents an 
undistorted spatial discretization, which allows continuing the calculations with a well-placed 
initial conditions problem. Next, new value variable fields must be transferred between 

1+∆ nunΩ  1+Ωn  
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reference and current configurations. This is performed in a direct way making a local 
smoothing and “transporting” the information by means of the particles to the updated 
position. This transfer method generates fewer errors than in the conventional one, because a 
nodally exact variable transport is performed during each time step. Finally an interpolation 
step of the problem variables set, to the new configuration sampling points, is carried out, and 
the calculation goes on. 

Considering a general constitutive model, as the one used by the authors3, for solving an 
incremental dynamic problem, the steps shown in the following chart are followed: 
 

Step  1: Initialization: Set of nn av ,  and 1+nq (set of internal variables) at time t  
Step  2: Connectivities generation: Using Delaunay triangulations techniques, a 

new connectivity relationship between particles is obtained2 
Step  3: Interpolation of new sampling points: for the updated particle positions 

and connectivities, new interpolations to sampling points  is performed 
Step 4: Solution of incremental non linear general problem: Under the 

connectivity stated in step 2, equation (1) is solved by a standard FEM 
method1 

Step  5: Nodal upload and information transport: Once solved the currently 
time problem, the new nodal variable fields are  updated. 

Step  6: Setting of new initial conditions: The convected set of variables are 
considered as initial conditions at time 1+t , then the process goes to step 2. 

Step  7: End of process 
  

3 MODELING THE TRANSFER STAGE IN POWDER FORMING PROCESSES 
The powder transfer stage is an important part of powder forming process. Recently, its 
practical importance in the final obtained compaction density distribution has been 
recognized. Obtaining non-homogeneous densities in this stage of the process could cause 
serious defects in finished mechanical pieces. Numerical simulation can be used to optimize 
the kinematics of punches during transfer stage, helping to obtain more homogeneous density 
distributions before the pressing stage. 
In order to show the performance of PFEM in modeling powder transfer processes a 
rectangular shaped chamber transfer, displayed in figure 3.1 is used. Box dimensions are 100 
mm height and 50 mm width. Upper and lower punches are both of the same width, 10 mm, 
and the transfer distance between them is kept constant in 30 mm. Punches displacements are 
50 mm during 1 second.  
The material  is iron powder with an apparent density of 3,4 gr/cm3, and it was divided in 20 
layers of 5 mm height each one to facilitate the particle tracking during the process. In figure 
3.2 experimental and numerical results are compared. They show a good agreement and 
display the potential benefits of the PFEM technology in this type of problems. 
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Fig. 3.1 Geometry and initial configuration of the transfer chamber 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2 Displacements field and density field after powder transfer stage. Left): experimental distribution of 
layers after the transfer process, center): numerical distribution of layers  and right): density distribution.  
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