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Summary. For finite element analysis of wave propagation in an elastic mediuouswied
by an adjacent “infinite” region, the introduction of external boundaries introdsmsere
reflection problems, which may ultimately distort the solution. Analysis based solglifeon f
elements is not sufficient, as the boundary will add unwanted reflectiotie tgrid. This
paper explores the approach of introducing a virtual element layer to absorbutheing
waves. The results indicate that reflections could be reduced to a large extent.

1 INTRODUCTION

Computational modeling of the rail vehicle — track structure -ga® involves the
merging of several subsystems. One of the most pronounced ckali@hgrent arises from
the vast (“infinite”) regions of predominantly clay (in Swedenkimg@ up the surrounding
medium. The shortcoming of the finite element method for unbounded domiaodices a
need for special methods. Waves need to leave the mesh withoatioefieat the external
boundaries.

There are several examples of applications where a vistioataaterial has been used as
an important component of a device mounted to shield the environment froribtagons
generated by the opration of a structure or vice versaflddng slab systems used in some
rail track systentsis an important example. Such an approach has been used on the Barbican
line on the London undergrounhdrhesepassive energy dissipati®ystems commonly rely
on a layer of a viscoelastic material converting elastic energy to heat

A computationally efficient local way to fulfill the radiatiomrmdition is to introduce an
artificial layer of elements outside the grid with a visasgt material. If the characteristics
can be adjusted so as to constitute critical damping, the waveisg in from the elastic
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material will be attenuated inside the fictitious region. Hetioe,energy of the outgoing
waves will be dissipated inside the absorbing boundary layer.

2 ABSORBING BOUNDARY LAYER

In this paper, a layer consisting of a viscoelastic mateiiblbe placed surrounding the
otherwise elastic solid FEM mesh. The target of this applicaitmadjust the parameters of
the layer such that the equivalent damping constant correspondste af<ritical damping.
If this can be achieved, the wave energy would be dissipatete ittse artificial domain
without returning to the interface to the elastic region. In trasmer, the external boundary
of the finite element domain representing the system undersaa¥l be non-reflecting.
Waves will be damped out as they reach the end of the viscoalasti@in. The concept is
illustrated in Figure 1.
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Figure 1. Absorbing boundary layer.

3 SIMULATIONS

3.1 Test Case 1: 1D wave propagation

In the first test, a wave was sent through a bar by arrgatar pulse. The geometry of the
bar under consideration is defined in Figure 2 and the vertical loadhistory in Figure 3.
The aim was to find optimal valuesgf » andh,
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Figure 2. Test configuration 1. Figure 3. Load history.
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The values of the elastic constants in the “real” region ardbas typical clay conditions
in Sweden and defined in Table 1.

Entity Value
Ee 100 Pa
Ve 0
De 2000 kg / m

Table 1. Properties of the elastic region..

Displacements are monitored at (see Figure 2) the surfacad1®an down in the bar. In
order to find the best configuration of the layer, a surface displacemertigstory analogous
to a state of critical dampingTests on the bar in Figure 2 with the set of elastic pasasiet

Table 1 yielded an optimal viscosity of 2.7 MNs/m, a ratio of =§ = é and a heighly =

e

9 m. Further tests with altering elastic parameters revealed the depende

n 1+v)a-a)
h D\/Eei(l_v) (pe 1)

Figure 4 presents the displacement time histories at the differenblati
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Figure 4. Displacements monitored at different timres.

Finally, it was investigated whether the number of elements ifajfee had an impact. A
series of simulations with different numbers of elements werfopmed. Although the
difference is minor, one element with a length of 9 m seems to be optimal.

Tests in 2D also indicate a strong reduction of reflections from external beamda
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4 CONCLUSIONS

A Kelvin material model has been implemented and integrated imtitiepurpose finite
element software FEMY0 An absorbing viscoelastic boundary layer has been added
surrounding a mesh in test geometries for elastic wave propagateninifuence of the
respective layers were evaluated by comparing displacentetite same configuration with
only elastic material.

The conclusions are:

* The relationship between the optimal viscosity and height of the boutedgy
and Young modulus, height and density parameters of the elastic region was found.
» For the best set of parameters, reflections were reduceichtioes small fraction of
the results with fixed boundaries in the 1D and 2D test cases.
* The numerical dependence and wave behaviour indicate the observamitiealf
damping in the viscoelastic subdomain.
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