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Summary. The thermal analysis using standard linear tetrahedral finite elements may be 
affected by spurious local extrema in the regions affected by thermal shocks, in such a severe 
way to discourage the use of these elements. The present work proposes a mixed continuous 
temperature/heat flux formulation to solve the unsteady thermal problem. This new numerical 
model should allow to improve the thermomechanical coupling effects during the simulation 
of 3D forming processes (for example during  hot or cold forging processes and during  heat 
treatment. The spatial model is based on the Galerkin approach with the linear tetrahedral 
P1/P1 mixed finite elements. Time integration is based on an implicit scheme. The 
performance of this method is evaluated by means of test case with analytical solution, as well 
as an industrial application, for which a well-behaved  numerical  solution is available, and 
by comparisons with two discontinuous Galerkin : the explicit Taylor Discontinuous Galerkin 
scheme, DTG (P0/P0 interpolation and third degree Taylor time integration) and the implicit 
Discontinuous Galerkin model, IMPGD (P0/P0+ interpolation with implicit Euler scheme). 
For this study, the 3D finite element FORGE3® software is required. 

 
 
1 INTRODUCTION 

During industrial forming processes, important thermal phenomena occur. So, the main 
purpose of this paper is to present an improved method for solving the thermal problem 
efficiently. We should deliver a good compromise between results accuracy and the 
corresponding calculation time, taking into account the strong mechanical couplings deriving 
from the mechanical problem. There are several resolution techniques of the thermal problem 
in the literature. The Standard Galerkin approach (SG) applied to diffusion problems 
(temperature being the only unknown)1,2, is certainly the best-known method, but it 
nevertheless generates difficulties in treating thermal shocks with the presence of oscillations 
in the FEM solution inside the regions affected by thermal shocks3. If an asynchronous time 
step is associated to the Galerkin version3 , the thermal shocks will be smoothed. This strategy 
is now used in the thermal solver FORGE3® and gives satisfactory results for linear or 
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slightly non-linear problems, as long as there aren’t too severe thermal shocks. In order to 
avoid these limitations, a mixed temperature/heat flux formulation of the thermal problem is 
then introduced which enables to capture high temperature gradients without any polluting 
oscillations of the solution. After studying the constant P0 finite element and establishing 
several comparisons between two discontinuous methods (DTG and IMPDG schemes), we 
naturally became interested in the P1 continuous interpolation: our new model will be called 
the Mixed continuous P1/P1 formulation4. In this domain, few investigations have been 
conducted. We can quote those of Zienkiewicz and al.1 and those of Manzari and al.5 that 
consider hyperbolic heat conduction equations with the non-Fourier hypothesis but this 
relevant scheme is only validated with 1D and 2D test cases. In this paper, after recalling the 
governing equations of the unsteady thermal problem, we will first describe our numerical 
model based on the Mixed continuous temperature/heat flux formulation, before delivering 
some numerical results. The three methods (DTG, IMPDG and Mixed) on which our 
investigation relies are implemented in the Forge3® software (able to simulate strongly 
coupled thermomechanical problems and steel quenching), validated and compared in purely 
thermal test cases, for which the analytical solution is known, and in one case of hot forging 
process simulation. 

 

2 GOVERNING EQUATIONS OF THERMAL MODELING 
The thermal equilibrium, the initial conditions and the boundary conditions are written in 

the following classical equations: 
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where T is the temperature,  the heat flux, t the time variable, the power dissipated by 

the plastic deformation, k the thermal conductivity, ρ the density and c the specific heat. Then 
the unsteady thermal problem (1) have two fields of unknowns: the temperature T and the 
heat flux q .  
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3 A MIXED CONTINUOUS FORMULATION  
Inspired by the Manzari’s work5, our numerical model uses mixed continuous P1/P1 finite 

element combined with an implicit scheme for time integration4. In this work, we must be 
able to choose compatible mixed finite element on temperature and heat flux. So linear 
element (P1) are used with the same interpolation functions employed for the temperature and 
each heat flux component. In each element eΩ , we have, by denoting 

the unknown vector at the j node of the mesh, the local spatial 
discretization
{ } { }jzjyjxj

t
j T,q,q,qU =

 of the thermal problem can be written by :  

{ } { } { eee
e
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   Finally, a system of (4*node number) equations at (4*node number) unknowns { }jU  is 
obtained for the global spatial discretization. 

For the time discretization, the Dupont implicit scheme2 is required. It’s a second 
order scheme with 3 time steps: the system (2) is discretized at the time 

 with . So the following linear symmetric system is 
obtained : 
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with , 021 ==αα 13 =α , 
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1 =β . After solving this linear system (3), the 

unknowns  at time  are estimated by : 1nU + 1n +

3

n21n1
1n

)UU(ÛU
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 4 APPLICATION TO A COMPRESSION OF ONE SIXTH OF CYLINDER 
For the hot forging simulations, a Norton-off viscoplastic behavior power law is used. We 

are interested in the mechanical work coupled with the various thermal exchanges. The 
cylinder was initially at the temperature T0=980°C and its material data 
are It’s placed between two tools of 
T

 ).27.5W/(m/Ck C),681J/(kgc ,kg/m 7870 3 =°==ρ
tool=200°C : the upper tool moves while the lower tool is fixed. Without all heat transfers 

(conduction and convection) and without frictions between the part and the tooling (Tresca 
friction law is required), only the self-heating phenomenon occurs during all the compression 
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phase. In this anisothermal case, an analytical solution may be established and evaluated by 
our continuous model. Fig.1a allows to conclude that the internal heat source is correctly 
estimated with our method.  

W&

 Figure1. Comparison between the SG Forge2®, the SG and the Mixed Forge3® : a)Anisothermal case 
with analytical solution and sensor1, b) Compression with heat transfer and 3 sensors. 

 
In a second test, friction and thermal exchanges are taken into account: exchanges occur as 

well between the part and the tools (hcd=2000W/(m°C)) as between the part and the air 
(Text=50°C, hext=10W/(m°C)). Three virtual sensors are placed in order to describe correctly 
these phenomena. The sensor 1 is on centre of the piece for the self-heating, sensor 2 on the 
surface of the piece for the convection and/or radiation and the sensor 3 on the part having 
contact with the upper tool (conduction). Presented in Fig.1b, the results are very relevant 
with the Mixed curves matching the SG Forge2® and Forge3® solutions which serve as the 
reference values in absence of analytical solutions or experimental results. 
 

5 CONCLUSION 

The comparison of the various methods shows that this Mixed method is stable, robust and 
rather well adapted to the thermomechanical coupling. Our formulation offers an excellent 
compromise between the precision of the estimations of the temperature field and the 
calculation time. Therefore, our Mixed method should be preferred to solve as well the 
thermal treatment problems and the thermomechanical problems. 
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