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Summary. The main aim of this document is to obtain general explicit expressions for the
critical failure direction and the critical hardening modulus corresponding to the best-known
classical continuum constitutive models (namely, continuum damage and plasticity models).
To reach this aim, the ellipticity condition of the constitutive tangent operator will play a
determinant role.

1 INTRODUCTION

Consider the Tangent Acoustic Tensor (Q(N) ) defined as Q(N) = (N (¢ ml), where C" is

the tangent operator and N is a vector normal to the localized band. The lost of ellipticity will
take place ([1]) when the following condition is reached:

det[Q(N)] =0 M)

This condition is the point of departure to obtain the critical values.

2 MATERIAL BIFURCATION CONDITIONS

Let us consider a material which behavior is described by a constitutive model
characterized by a constitutive tensor, C" (or tangent material operator), which expression
reads:

c" =£c* -xlc :mon:ce) o)
with Ezg:(l—d), K:M for damage models and K = ! &=1, for
, r H” +n:C°:m
plasticity models. n is the flow plastic, m is the flow of the plastic potential, ¢ is the stress-

like hardening/softening variable, d is a damage variable whose value ranges from 0 to 1, r
is the internal variable, see [2] for more details.
Applying the definition of the standard fourth-order isotropic elastic modulus tensor in

function of Lamé’s parameters (A, W), i.e.. C°=2ul + )\(1 O 1), and some considerations (see
[3], [4], [5]), equation (1) can be reduced to the following one:

€ _
KH) =Z(N) 3)
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with Z(N) = N2 Tr(m)Tr(n)(a + ) + 2AuTr(m)(N [ M) (¢ + b) +
+ 20 Tr(m)(N [ () (a + b) + 4pa(N [ [ [fn) + @
+4p2b(N [in () (N [ (M)
where a:l, b=- ()\ﬂl) l
(A +2p) p

The problem to be solved here is to find the critical normal vector N, , which can be done

crit °

by maximizing function (4). Once we have obtained the critical values N_.. , we can obtain

H,,., by substituting N

crit »
. 11 equation (3).

3 CRITICAL VALUES

3.1 Case of colinearity between n and m

For the coaxial non-associated case the principal directions for n coincide with the
principal directions of m but n#zm.
We can explicitly express the corresponding angles as:
[(m3 - ml)nz + (n3 - nl)mz]gv + (2n3 - nl)m3 —mn, 5)
[(ml _m3)n2 + (nl - n3)m2] v+ (2n1 _n3)m1 —nm;,
where v is the Poisson’s ratio. It is interesting to observe that the critical angle does not
depend on the Young’s modulus E.

tan’0 . =

crit

3.2 The critical Hardening/Softening parameter ('Hc,,-, )

Damage Models
For the isotropic damage case #., is given by:
2
He =g 1-—"
z( - (N)J (6)
where Z . (N) is the maximum value from (4).
Plasticity Models
E__[lm_pon, +n)+mHem, +m)?
b= =4{vim,n, +m;n, )+{m,n, +mn 7
5] 100 pmn +ma)+men smad) )

where m_; =m, -m,; n,_, =n, -n;.

4 CRITICAL VALUES FOR SOME CONSTITUTIVE MODELS

Several classic models of plasticity and damage are employed
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4.1 One parameter models

CRITERIA
RANKINE VON MISES TRESCA
iti 8, =0 S, +Vs B, =+45°
Crltlcal taIlZ ecm’t = 0 = ! tanz ecrit == 3 : tan2 ecrit = 1 = :
angle 8, =0 S, +vs, 0, =-45°
critical 3ES;
herdening HE, =0 Mo =~ 5 22 5 My =0
modulus 2(51 +S; +5; )

where s, are the principal values of the deviatoric stress tensor s .

4.2 Two parameter models

CRITICAL VALUES FOR THE MOHR-COULOMB CRITERION

critical angle

__2sinysin@¢+sin ¢ +sin

tan’ 8, = - : : :
2sin Psin@—sin @—sin Y

critical hardening
modulus

o
crit

E (sin Y —sin (p)2
8(1-v?) J (1-+ sin? ) (1 +sin® ¢)

where ¢

is the angle of internal friction and @ is the dilatancy angle.

CRITICAL VALUES FOR THE MOHR CRITERION (ASSOCIATED CASE)

where N' =

2 —sin@—sin
critical angle tan’ 0, = M
2 +sin@+sin
I I 2
critical hardening P o= E (N -M )
modulus et 4(1-v?) (1 + M')(l + N')

1-si 1-si
Lzsing o Losin® e M50, M'20
1+sin@ l+siny

CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE)

critical angle

tan’ 0 =

_(1+V)(a10(4 +O(20(3)—2(S3 +V52)O(1(12
(1+V)(G1a4 +G2a3)+2(51 +V52)G1G2

crit

critical hardening
modulus

P —
crit

(1 _Evz) [Al + A2 + A3]

For

the Drucker-Prager criterion it was considered n=a,s+0;1 and m=a,s+a,l.
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_[i-2v)s,a, +(1+v)a,][1-2v)s,a, + (1 +Vv)a,]

A =
! (1-2v) ’
4, = [2(\’52 +s,)a 0, +(1+v)a,a, "'(1203)]2 . A, ==3(1-V) (1-2v)t, 00, (1+v)(0(3a4),
4a,0, (1-2v)

1
with 1}, = 9 [(01 _02)2 + (02 _03)2 + (03 _01)2]~

4.3 Isotropic Damage Model

ISOTROPIC DAMAGE MODEL
€, tVvE
critical angle tan? 0, = -3 "2
€, +VE,
critical N+u)r2
hardening HE =(1-d)1- ( H)
modulus {AZ @)+ [le, -e,) +21r(ee, +e, w2l +s§}

5 CONCLUSIONS

Starting from the Tangent Acoustic Tensor we obtained explicit formulae for the critical
hardening modulus and the normal to the critical plane at localization.
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