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ABSTRACT 

The largest runs up-to-now are usually performed for simple symmetric positive definite systems. It 
is a reasonable approach when measuring the overall scalability of an algorithm/implementation. 
However, in order to have an impact in science and industry, we must extend scalability to the most 
challenging applications, since these are the ones that really require extreme scale simulation tools, 
e.g., multiscale, multiphysics, nonlinear, and transient problems. In this talk, we will discuss some of 
our experiences in the development of FEMPAR, an in-house finite element multiphysics and 
massively parallel simulator. 
On one hand, we will talk about how to deal in a parallel element-based environment with 
multiphysics simulations that involve interface coupling, e.g., fluid-structure interaction. Our 
approach is based on the partition of topological meshes, and ghost element information, in order to 
define locally the degrees of freedom and the unknowns that must be communicated among 
processors.  
On the other hand, we will discuss how we deal with the resulting multiphysics (non)linear systems. 
We have two different approaches to the problem: block preconditioning and monolithic solvers. 
Block preconditioning techniques are interesting in the sense that they allow us to decouple complex 
multiphysics problems into simpler (probably) one physics simulations. However, in order for block 
preconditioners to be effective, we must define effective approximation of Schur complement 
systems, which can be a complicated (and very heuristic) task. We will show how we have 
implemented complex (recursive) block preconditioning strategies in FEMPAR using abstract 
definitions of operators, and how this framework has been applied to different multiphysics solvers.  
We will also discuss how we can reach sustained scalability up to large core-counts (about 400,000 
cores in a BG/Q). Our in-house numerical linear algebra solvers are based on multilevel domain 
decomposition techniques, and their very efficient practical implementations based on overlapped 
and asynchronous techniques. We will consider two different approaches, the first one being a 
combination of block-preconditioning and multilevel domain decomposition, whereas the second one 
will be a truly monolithic domain decomposition approach.  
Many multiphysics simulations are also multiscale, and the use of adaptively refined meshes can 
reduce even orders of magnitude the computational cost of simulations with respect to uniformly 
refined meshes. The possibility to reach extremely scalable adaptive multiphysics solvers would open 
the door to unprecedented simulations of challenging problems that are out of reach nowadays. In 
this sense, we will show how we are dealing with scalable adaptive solvers in FEMPAR, via a 
combination of the p4est library for parallel mesh refinement and dynamic load balancing in our 
element-based framework. Further, we will show how we modify our solvers to deal with 
nonconforming meshes through interfaces, and the effect of cheap space-filling curve partitions on 
solver robustness.  
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