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Abstract. The paper discusses incomplete sensitivity evaluations for shape optimization

and flow control problems. It also shows how reduced order models can be introduced to
extend the validity domain of the approach.
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1 INTRODUCTION

We shall discuss incomplete sensitivities for shape optimization problems and also how
reduced order models can be introduced to extend the validity domain of the approach.
This is to build a bridge between classical gradient and quasi-gradient methods and new
approaches based on reduced order modelling and metamodel creation.

For gradient-based shape optimization methods, it is necessary to have an estimation
of the derivatives of the discrete cost function with respect to control parameters. When
the number of control parameters is large, an adjoint equation is necessary. It is tempting
to use a discretization of the adjoint equation of the continuous problem; this however
would not account for the discretization errors of the numerical schemes (like numerical
dissipation for instance). Automatic differentiation produces the exact derivatives of the
discrete cost function. In reverse mode, the cost of this evaluation is independent of the
number of control parameters as for a standard adjoint method. But, practical issues
remain for large codes.

In multi-criteria optimization sensitivity analysis is important to discriminate between
Pareto points and this even if a gradient free approach is used. Indeed, the knowledge of
sensitivity permits to qualify various points of a Pareto front from the point of view of
robustness: two points on a Pareto front can be compared if one considers the sensitivity of
the functional with respect to the independent variables which are not control parameter.
The robust optimum is the one with lowest sensitivity.

Also, sensitivity evaluation is important because often in simulations information on the
uncertainties on the results is more important than the results themselves. For instance,
it is essential to be able to identify dominant independent variables in a system. As
these will need more accurate monitoring and for which precise measurements should be
provided.

The presentation concentrates on the concept of incomplete sensitivity in shape op-
timization. The aim is to avoid the linearization of the state equation. We will see
that sometimes this needs a reformulation of the initial problem. Also, this permits an
original introduction of adhoc reduced order modelling to be used in already existing
gradient-based minimization algorithms. Incomplete sensitivity can also be used in build-
ing metamodels by co-Kriging approaches for instance.

2 SHAPE OPTIMIZATION

For the design of a shape S, consider a general situation with a geometrical design
or control variable z fixing S(z), auxiliary geometrical parameters ¢(z) (mesh related
informations), a state variable u(g(x)) solution of some state equation F(u(q(z))) = 0
and finally a cost function for optimization J(z, ¢(z), u(q(x))):

Jiw = q(x) = ulg(z)) = J(z,q(x), u(q(z))) (1)
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The derivative of J with respect to x is:

The major part of the computing time of this evaluation is due to u4g, in the last term.
The classical approach is by adjoint variable where the last term becomes:

Juuq(J:c = (JU(FU)_1> Fqu = UFqu

where v si solution of vF,, = J,. But, F,q, = F, worths zero except along the shape where
it describes the dependency of the boundary conditions on the shape with respect to shape
variations. This remark is central for the development of low complexity computational
strategies for the gradient. In particular, it means that if the parameterization is chosen
such that F, ~ 0 computing the adjoint variable v is useless. For instance, a typical
situation with fluid flows is with zero normal pressure gradient along the shape and
admissible shape variation normal to the shape.

3 A MODEL PROBLEM

Let us start with a simple model problem. Consider as cost function J = €"u,(€) and
as state equation the following Poisson equation (taking |e| << 1)

—uy, =1, on Je, 1] u(e) =0, u(l)=0

which has as solution u(y) = —y?/2+ (e + 1)y/2 — €/2.
This is a case of a function which has a strong geometrical element and a weak dependance
on the geometry via the state u. The gradient of J with respect to € is given by

n—1

- (nle=1) -9

The second term between parenthesis, —e, is the state linearization contribution which is
neglected in incomplete sensitivities. We can see that the sign of the gradient is always
correct and the approximation is better for large n.

Jo(€) = € (nuy(€) + euy(€)) =

4 HADAMARD EQUIVALENT B.C.

Above, we mentioned the normal pressure boundary condition. Another important
condition is slip or non penetration condition. The Hadamard slip boundary condition
accounts for the effects of small shape deformations on the state and is prescribed on the
undeformed shape x! instead of the slip condition on the deformed shape z2.

Denote by n; and ns the unit normal on the undeformed and deformed shapes. On the
later the slipping boundary condition reads: us.ny = 0 and on the former If we suppose
that the variations of the geometrical quantities dominate the physical ones:

Ug. Ny ~ U1.N7 + 'Lb1.<n2 — 77,1) =0

3
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This defines an implicit relation for u;.n; which can be implemented in a iterative reso-
lution procedure:

W, = —uf.(ng —ny)

In the same way, an equivalent boundary condition can be derived for the tangential
component. These relations give satisfactory results when the shape curvature and the
amount of the deformation are not high [2, 1] and indicate how incomplete sensitivities
can be defined neglecting state variations in shape deformation.

Another interesting situation is when one can express the state in the domain as (denote
the shape by v,):

u=w(y —ys)v(w(y — ys)) (3)
Suppose u must satisfy a homogeneous Dirichlet boundary condition on the shape, then

w tends to zero with the distance to the shape y — y, and v is selected to satisfy the state
equations. Now, sensitivity analysis for a functional such as J = J(ys, u) gives:

VyJ =Jy, + Ju(wvys + Uwys)

But, w(0) = 0 and one knows the dependency between w and y,,. Therefore, in cases where
the near-wall dependency of the solution with respect to the distance to the shape is known
the sensitivity with respect to shape variations normal to the wall can be obtained without
linearizing the state equation. Wall functions for fluids give typical such dependencies.

5 INCOMPLETE SENSITIVITY

Continuing the analysis above, we have observed that when the shape is regular the
last term in (2) is small if J is of the form J(z) = [, f(2,q(2))g(w). In other words, it
should involve a product of state by geometry quantities. In the analysis for the injection
condition we have f =n and g = u.

A middle path between full linearization of the state equation and incomplete sensitivity
is to use a reduced complexity or reduced order model @(z,u) ~ wu(z) to provide an
inexpensive approximation of the missing term in (2):

SIS

(4)

Reduced order models can come, for instance, from a reduction in dimension of the state
equations as in wall functions [22]. They can also be built through learning, assimilation
and identification in parametric or non parametric models [13, 6, 9, 10, 12, 15, 16, 17, 19,
20| using up-to-date techniques to minimize the curse of dimensionality in the sampling
needed in building these models [18, 5, 7, 8, 11, 14].

6 LEVEL SET METHOD

Let us make a link between the two previous points and the level set method which
is an established technique to represent moving interfaces with a tremendous dedicated

4
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Figure 1: Effect of regularity control on the level set function during optimization.

literature [26, 27, 29]. A parametrization of a boundary I' by the level set method is based
on the zero-level curve of a function v (say the signed Euclidean distance to I'):

F'={zecQ : ) =0}, Y()==xinf|z—y|

yel’

with the convention of a plus sign if x € €2 and minus sign otherwise. Hence

TMF = 07 w’ﬂ:{d\ﬂ < 07 ¢Q >0 (5>

When the boundary moves with velocity V' by a pseudo time step d(, the shape be-
comes:

IF'={z : Y((+0¢,x+ V() =0}

This motion can be described by:

O B
o HVVe =0

In the context of optimization we consider V' = V,,J . n where the local normal to the iso-
contours of ¢ is defined by n = V1 /|V| (where V is with respect to space coordinate).
The variation of ¢ are then given by

Ve ==V JIVY| (6)

Decomposition (3) is particularly interesting with a level set parameterization:

u = w()y

Consider a functional of the form:
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with a gradient with respect to ¢ given by:
Vyd = Jy + Jyuy

with
Uy = W'+ w(y)vy

as w(yy = 0) = 0. Incomplete sensitivity u, = w'v is exact in this case and can be
extended inside the domain if a low order model is known for v. This gradient is used
in (6) but it needs regularity control [21] as shown in figure 1 for a constrained shape
optimization problem with level set parameterization. On the other hand, the loss of
regularity can be useful in topology optimization 28] as it permits for holes to appear.

6.1 Multi-criteria problems

This is a situation where incomplete sensitivity has an edge over full gradient calcu-
lation. Suppose p functionals j;,7 = 1,..,p are involved in a design problem (as the one
presented below):

Irgnjl(u(x)), such that j;(u(z)) =0, 7=2,..,p

The low-complexity of incomplete sensitivity permits to avoid use of penalty in J =
> a;ji. Indeed, to get J' we evaluate individual incomplete sensitivities j. and use a
projection over the subspace orthogonal to constraints: {(.., j;*, ..),J # i}. For instance,

one can use: .
gi = gi = 255 35)35
J#
then J' = j!  where iyq, = Argmin;|ji||. With a full gradient this would have implied
calculating an adjoint variable for each of the constraint v; F,, = (J;)4.

7 APPLICATION

An important class of functionals concerns the aerodynamic force on the shape along
an arbitrary direction s:

J:/Shape[T-n]-sda (7)

with 7' = p I —v(Vu+VuT) the Newtonian stress tensor. This enters the validity domain
of incomplete sensitivities.

We present the application of incomplete sensitivity concept to the design of axial
blades under geometric and state constraints. T'wo quantities define the blade functioning:
the flow rate @ and the pressure rise Ap between in and outlet boundaries (see figure
3-left). The optimization is necessary to improve the fan performances while maintaining
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Figure 2: Sketch of a blade geometry.

strong constraints such as low axial packaging and low sound level emitted. The fan
efficiency is defined as:
 QAp

=07 (8)
where T, = [, 7 [T - 1] - €g do is the torque and €2 the rotation rate. The problem of
interest is therefore to minimize the torque 7, at given @, 2 and volume. We would like
also to increase Ap. (2 is an independent variable and is given. The volume constraint

can be transformed into a boundary integral by denoting X = (x,y,2)"

V= / 1dv = / 1. Xy = [ Xido
Q Q3 a0

But, Q and Ap are not defined on the shape and are therefore outside the application
domain of incomplete sensitivity. @ is easy to enforce through the inlet velocity conditions
which can be frozen during the design. Ap on the other hand needs more workout to
maintain. This is a typical situation where the original problem is not in the application
domain of incomplete sensitivity but can be brought in using the state equations, here
the Navier-Stokes system for incompressible flows. Consider the domain in figure 2, using
Stokes formula for the steady momentum equation we have:

/F(U(u.n) +T.n)do =0

A first classical approximation is to neglect viscous effects at inlet and outlet bound-
aries. Then, using periodicity conditions for lateral boundaries we have:

/ w(u.n)do + u(u.n)da—i—/ pnda+/ pndo—i—/ Tnydo =0 9)
Fi Fi l_‘o Fw

Ty

7
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Let us denote mean value quantities at inlet and outlet boundaries by w;, u,, p;, po.
The inlet and outlet boundaries have the same length L. From the continuity equation
(V.u = 0) and due to periodicity on lateral boundaries and slip condition on the shape,
we have u;.n; = —u,.n;.

The first component (along = axis) of (9) is therefore reduced to:

1 c
A:0_ i — Lo Poo 002* 1
P=DPo—D Cogpooltioo|” 7 (10)

where C,, = Cycos(f) — Cysin(/3) is the horizontal aerodynamic force. Hence, the pressure
difference between inlet and outlet boundaries can be expressed through the horizontal
aerodynamic force on the blade which is a boundary integral making possible the appli-
cation of incomplete sensitivities.

Let us consider the application of this approximation for the design of a blade for a
geometry provided by Valeo Motors and Actuators. It represents a fan with 11 blades
at the operating point @ = 1800 m?/h and Q = 1700 rpm. Because this is a real
configuration of already optimized blade we do not expect huge improvement. Still it
would be interesting see if the design brings some extra performances and also this will
be an a posteriori validation of the configuration. The flow solver used is TASCrLOW
with a structured multi-block O-type elliptic mesh having about 140000 nodes and 4000
CAD-Free control points on the blade.

Figure (3-right) shows the history of normalized 7, @ and Ap during the design. One
can see that the efficiency increases with a decreasing torque and increasing pressure rise.
This proves that the analysis above linking pressure rise to aerodynamic coefficients is
valid making possible the use of incomplete sensitivity in this design. This design has also
been experimentally validated [4].

8 TIME DEPENDENT PROBLEMS

Another situation where incomplete sensitivities bring a real relief is for time-dependent
applications. In these situations, incomplete sensitivities enable for real time sensitivity
definition in the sense that the state and the sensitivities are available simultaneously
without the need for solving a backward in time adjoint problem. This avoids the difficulty
of intermediate states storage. Indeed, unlike in steady applications where intermediate
states can be replaced by the converged state, reducing the storage to one state, in time
dependent problems one cannot make this simplification.

We distinguish two situations: when the control is stationary and when the control is
time-dependent. A shape optimization problem for unsteady flows is in the first class,
while an active flow control problem belongs to the second domain (Below we give an
example of buffeting control using Hadamard equivalent boundary conditions and incom-
plete sensitivities).

The problem of shape optimization for unsteady flows can be formulated as:

min J(S. {ut.q(S).t € 0.TT) (1)

8
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Figure 3: Axial blade optimization: computational domain (left) and evolution of blade performances
during optimization (n/n9, Ap/Apo, Tr/Tro)-

where the state u(t,¢(S)) varies in time but not S. The cost function involves the state
over a given time interval [0, 7] through for instance:

1 /T
J(8) =7 [ 3(S.a(5).ult.q($))dt (12)
where j involves instantaneous pressure based lift or drag coefficients:

Ca(t) = !

B Poo,ﬁoo,2

[ ot a(S)ds, Clt) =~ [ @ q(S)ds

pOOWOOP

where p,, and ., denote reference density and velocity vector taken for external flows as
far field quantities.
The gradient of J is the averaged instantaneous gradients:

7(8) = 5 [ 75,08, utt.aSWit = 7 [ (s +juas) + 7 [ duus

We need to accumulate the gradient over period [0,7]. The first term is the incomplete
sensitivity. In case the full gradient is required then an adjoint problem is required to
compute the remaining terms.

Shape optimization for unsteady flows has numerous applications. For instance, noise
reduction as the radiated noise is linked to lift and drag time fluctuations [23].
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8.1 Model problem

Let us present the incomplete sensitivity analysis on another model problem for un-
steady situations. Consider the following time dependent state equation for u(y,t), —S <
y < S, t>0in a infinite channel of width 25.

with
F(S,y,t) = —ewsin(wt)(S? — y*) + 2(1 + & cos(wt))

inducing small perturbation in time around a parabolic solution if ¢ << 1. Indeed, the
exact solution for this equation is:

u(y t) = (S* = y")f(t), f(t) = (1+ecos(wt))
And consider a functional of the form:
J(S,t) = S"u,(y = S,t), meIN* (14)
involving instantaneous state quantities. The sensitivity with respect to S is:
3o (S 1) = mS™ (S, t) + S™u, (S, 1) (15)

The first term is the ’instantaneous incomplete sensitivity’.
As we have:
uy(S,t) = =25f(t), and w,,(S,t)=—2f(1)

One can express the different contribution in (15):
Js(S.t) =mS™ (=25 f(t)) + S™(=2/(1))

Comparing with —2(m+1)S™ f(t), one sees that the approximation of the gradient based
on this incomplete sensitivity is accurate and its precision increases with m. Most impor-
tant, the incomplete sensitivity has always the right sign. It is obvious that the analysis
still holds if the functional involves a time integral:

J(S,T) = S™u,(y =S, t) dt

(0,1)

Now, if the functional involves an integral over the domain:

J(s.7) = | () dt dy
(0,T)x(—=5,5)

One can still make the analysis above and see the importance of different contributions:

TY = m—1 m
TAST)= [ S uy(S,0) + Sy (y,1) i dy

10
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gm Olig dt
+/(07T)[ uy(y,t)] s

Again, an incomplete evaluation of the sensitivity is accurate because u,, = 0. One also
notices that if m is odd the last integral vanishes, even though this integral is cheap to
get as it does not involve any state sensitivity with respect to S.

Anyway, incomplete sensitivity is efficient but, as we said, it only holds for special
functionals.

8.2 Buffeting control with incomplete sensitivities

We consider the flow at transonic regime over an airfoil. At this regime, the wake un-
steadinesses forces the shock to move up and down on the upper surface of the airfoil. This
is called buffeting. We would like to provide active control by an injection /suction devices
placed at mid-chord on the upper and lower surfaces. The amount of injection/suction is
defined using instantaneous incomplete sensitivity for J = (C}); which aims at removing
lift fluctuations. These are set to zero outside the support of the control as shown in
figure 4:

5S() = —pVI (1) xo

where shape variations are linked to injection/suction by the Hadamard approximation:

un(t+0t) = —u.on(t) + 5§§t) n(t)

where n(t) is the normal to the shape at time ¢ and dn(t) is the variation of the normal.
Figure 5 shows the pressure coefficient distributions with and without the control turned
on. One can see the control is effective and buffeting has been removed.

9 CONCLUDING REMARKS

Hadamard incomplete sensitivity concept has been described. As this is reduced order
modelling it has limitations and only applies to special functionals. These must involve
product of state by geometry quantities and should be defined over the support of the
control parameters (i.e. shape for a shape optimization problem). Aerodynamic coeffi-
cients are in this class. It has been shown how to reformulate the initial problem when
not entering this validity domain. Again, this is not always possible, but when it is so, it
permits to access sensitivity at zero cost. Beyond this, incomplete sensitivities are really
helpful for time dependent problems (not reported here) and for multi-criteria situations
avoiding the calculation of one adjoint by functional.
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Figure 4: Shape variations in time.
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Figure 5: Instantaneous pressure coefficient over the airfoil. Control off (left) and on (right).
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