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Abstract. The model presented in the paper is based on a kinetic equation for the 
probability density function (PDF) of particle velocity distribution [1, 2]. In comparison 
with the latter, the DIM allows us to take into account a number of effects caused by the 
particle inertia: (i) the impact of gravity and other body forces, (ii) the so-called inertial 
bias effect, i.e., the transport by reason of the deviation of particle trajectories from the 
fluid streamlines, (iii) the preferential accumulation of particles due to turbophoresis, 
and (iv) the inertia and crossing-trajectory effects on particle turbulent diffusivity. As 
the boundary condition for the particle concentration equation, we invoke a relation 
between the flow rate of depositing particles and the particle concentration in the near-
wall region. The DIM was incorporated in a finite-volume CFD code and coupled with 
fluid RANS in the frame of two-way coupling. The fluid turbulence is simulated using a 
nonlinear, explicit algebraic Reynolds model, along with the two-equation k ε−  model 
with taking into account particles influence on turbulence. The DIM was applied to 
simulations of aerosol dispersion and deposition in isothermal and non-isothermal 
turbulent flows inside straight ducts and circular bends, when the transport of particles 
is caused by the action of diffusion, thermophoresis, turbophoresis, and centrifugal 
force. The predictions of deposition efficiency obtained using the DIM were found to be 
in encouraging agreement with available experimental data and Lagrangian tracking 
simulations coupled with fluid DNS or LES. 
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INTRODUCTION 
The existing strategies of modeling turbulent two-phase flows can be subdivided into 

two groups depending on the Lagrangian tracking and Eulerian continuum approaches 
for handling the particulate phase. In the framework of the Lagrangian method, the 
particles are assumed to encounter randomly a series of turbulent eddies, and the 
macroscopic particle properties are determined solving stochastic equations along 
separate trajectories. As a consequence, such a method requires tracking a very large 
number of particle trajectories to achieve statistically invariant solution. As the size of 
particles decreases, the representative number of realizations should increase because of 
the increasing contribution of particle interactions with turbulent eddies of smaller and 
smaller scale. Thus, this technique, especially when coupling with DNS or LES for the 
computation of fluid turbulence, provides a very useful research tool of investigating 
particle-laden flows, but it can be too expensive for engineering calculations. The 
Eulerian method deals with the particulate phase in much the same manner as with the 
carrier fluid phase. Therefore, the two-fluid modeling technique is computationally very 
efficient, as it allows us to use the governing equations of the same type for both phases. 
In addition, the description of fine particles does not cause great difficulties because the 
problem of the transport of particles with vanishing response times reduces to the 
turbulent diffusion of a passive impurity. Overall, the Lagrangian tracking and Eulerian 
continuum modeling methods complement each other. Each method has its advantages 
and, consequently, its own field of application. 

To simulate the dispersion of low-inertia particles in turbulent flows, the Eulerian 
models of diffusion type appear to be very efficient. In [4-6], a simplified Eulerian 
model called the diffusion-inertia model (DIM) was developed. This model was based 
on a kinetic equation for the probability density function (PDF) of particle velocity 
distribution [1-3] and was coupled with fluid RANS in the frame of two-way coupling. 

1 MATHEMATICAL FORMULATION 

1.1 Diffusion-Inertia Model (DIM) 
The governing equation for the concentration of low-inertia particles is given by [7]: 

( )i k u kji i B
p i Tp ij p

i i i i j j

u u fU DU DF D
t x x Dt x x x x

τ τ
⎡ ⎤′ ′∂ 〈 〉∂ Φ ⎡ ⎤ ∂ Φ∂Φ ∂ ∂ ∂Φ⎛ ⎞ ⎢ ⎥+ + − Φ = + + Φ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1) 

By this means, for low-inertia particles, namely, when the particle response time is 
shorter than the turbulence time macroscale, the conservation equation set is reduced to 
the diffusion-type equation for the particle concentration, and hence one does not 
require solution to conservation equations for the momentum of the particulate phase. 
This approach is called the diffusion-inertia model (DIM). In the limit of zero-inertia 
particles ( 0pτ → ), Eq. (1) becomes the conventional diffusion equation: 

i
B T ij

i i i j
⎟⎟

U D D
t x x x x

⎛ ⎞∂ Φ∂Φ ∂ ∂Φ ∂Φ
+ = +⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

T ij i j LD u u T, ′ ′〈 〉  (2) =

with  being the diffusion tensor of noninertial admixture. T ijD
In comparison with (2), Eq. (1) allows us to take into account a number of effects 

caused by the particle inertia: (i) the impact of gravity and other body forces, (ii) the so-
called inertial bias effect, i.e., the transport by reason of the deviation of particle 
trajectories from the fluid streamlines, (iii) the turbulent migration (turbophoresis) due 
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to the gradients of velocity fluctuations, and (iv) the inertia and crossing-trajectory 
effects on particle turbulent diffusivity. 

The response time of aerosol particles is given by 

( ) 10.6873
0 1 21 Kn exp 1 0.15Re

Knp p p
AA Aτ τ
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where according to [8] , 1 1.20A = 2 0.41A = , and 3 0.88A = . The particle Reynolds 
number appearing in (3) is evaluated as 
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The Brownian diffusivity is equal to 
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In a quasi-isotropic approximation that corresponds to averaging over different 
directions, Eq. (1) and the relative velocity  can be presented as  rV

( )
m m
u Tpmi i

p i B Tp
i i i i i i

q DU DUF D D
t x x Dt x x x x

τ
⎛ ⎞∂⎡ ⎤∂ Φ ⎡ ⎤∂Φ ∂ ∂ ∂Φ ∂⎛ ⎞+ + − Φ = + + Φ⎜⎢ ⎥⎜ ⎟⎢ ⎥ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎝ ⎠

⎟⎟ , (4) 

( )1 m mi
r i i p i p i B u Tp

i

DUV V U F D q D
Dt x

τ ∂⎛ ⎞ ⎡ ⎤= − = + − + Φ⎜ ⎟ ⎣ ⎦Φ ∂⎝ ⎠
,  (5) 

m
T Lpm

Tp
L

D T
D

T
= , 

Sc
T

T
T

D ν
= , 

2
3

l n
Lp Lpm

Lp

T T
T

+
= , 2

3

l n
m u u
u

q qq +
= , p u

u
Lp

f
q

T

ς
ς

ς

τ
= . 

Note that, in (4) as compared to (1), the space dependence of the Brownian 
diffusivity is ignored.  

Solution to Eq. (1) or (4) right up to the wall is made difficult by the fact that the 
concentration of particles can steeply rise due to turbophoresis in near wall region. In 
order to avoid the need to solve the particle concentration equation up to the wall, we 
use the method of wall-functions that has extensively employed starting from [9] in 
modeling single-phase turbulent flows. In accordance with the wall-function method, 
we invoke, as the boundary condition, a relation between the flow rate of deposing 
particles  and the particle concentration in the near-wall region outside the viscous 
sub-layer  
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Here  designates the ‘diffusion−turbulence’ component of the particle deposition 
rate caused by diffusion  and turbophoresis . The quantity  designates the 

DTV

DFV TRV CFV
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‘convection−force’ component of the deposition rate induced by an action of convection 
and body forces in the near-wall region, where , , and wU wF

wDU Dt  are the normal-
wall components of fluid velocity, body force acceleration, and fluid acceleration in the 
near-wall region. The rebound coefficient, χ , measures a probability of the rebound of 
a particle from the wall and its return into the flow after collision. The surface is 
perfectly adsorbing if 0χ = , and the particle deposition is absent if 1χ = . The 
parameter  quantifies the ratio of the ‘convection−force’ and ‘diffusion−turbulence’ 
components of the deposition rate. Deposition is controled by the ‘convection−force’ 
mechanism when  (

b

b →∞ 0γ → ), and the deposition rate tends to zero when b  
(

→ −∞
bγ → − ) because the action of this inhibits the motion of particles to the wall. The 

deduction of the coefficient γ , and relations for particle deposition rates ,  and 
 is given in [7]. 

DFV TRV

CFV
The boundary condition (6) is valid for the particles with 2

0 100p fuτ τ ν+ ∗≡ ≤  when 
the first grid node is chosen outside the viscous sub-layer, where 1Φ  changes weakly 
with variation in the normal distance from the wall. 

1.2 Continuous phase 
In what follows let us consider the governing equations for the carrier fluid. When 

the volume fraction of the particulate phase is small ( 1Φ ), its effect on the continuity 
equation of incompressible fluid is negligible and this is written as 

0i

i

U
x

∂
=

∂
 (8) 

The balance fluid momentum equation is given by: 

1 Pi i
f i j i

f i j j

DU U u u A
Dt x x x

ν
ρ

⎛ ⎞∂∂ ∂ ′ ′= − + − 〈 〉 +⎜⎜∂ ∂ ∂⎝ ⎠
⎟⎟ , (9) 
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where pM fρ ρ≡ Φ  is the mass particle loading of the fluid, and  quantifies the 
back-effect of particles on the fluid momentum that is determined using (5). 

iA

1.3 Turbulence model 
Turbulent flow characteristics are simulated on the basis of a two-equation 

turbulence model incorporating the equations of kinetic turbulence energy and its 
dissipation, that is, the k ε−  turbulence model. In the frame of this model, the fluid 
kinetic stresses are given by [7]: 

2 2
3 3

ij ji
i j T ij

j i k

k UU Uu u
x x x

δ kν δ
⎛ ⎞∂∂ ∂′ ′〈 〉 = − + −⎜⎜ ∂ ∂ ∂⎝ ⎠

⎟⎟ , (10) 
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It is clear from (10) that, as distinct from the turbulent viscosity coefficient of the 
standard  model k − ε 2

0T C kμν ε= , Tν  incorporates two additional effects: (i) the 
presence of particles in the flow and (ii) the non-equilibrium of turbulence that lies in a 
possible inequality between the production and the dissipation. If the particles are 
absent ( , , 0M = mΠ = Π mε ε= ) and the equilibrium between the processes of 
production and dissipation takes place ( εΠ = ), Tν  reduces to 0Tν . In the equilibrium 
approach ( m mεΠ = ) which is valid, for example, for modelling the turbulent near-wall 
flow, (10) predicts 

( ) 2
11 u

T
p

C Mf kμν
ε ε
+

=
+

. 

The turbulence energy balance equation is conclusively given as 

( ) ( ) ( ) (1 1 11 1 1T
u f u u

i k i

Dk k )p pMf Mf Mf
Dt x x

νν ε
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Gε  (11) 

By analogy with (11), the turbulence dissipation balance equation is represented in 
the form 

( ) ( ) ( ) ( )1 1 1 1 21 1 1T
u f u u p
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 (12) 
By this means, the standard k ε−  model is modified in two aspects. Firstly, the 

modulation of turbulence due to particles is taken into consideration. Secondly, instead 
of standard expression for the eddy viscosity coefficient, Tν  is assumed to be a function 
of the turbulence production-to-dissipation ratio m mεΠ . The values of constants in 
(10)−(12) are usually taken to be as follows: 0.09Cμ = , 1.0kσ = , 1.3εσ = , , 

. Moreover, , S
1 1.44Cε =

2 1.92Cε = 1 1.1C = c 0.9T = , and . 1/ 2 0.3Cμα = =

2 RESULTS 
The DIM, consisting of the particle concentration equation (4) and the boundary 

condition (6), is coupled with the fluid balance equations (8), (9), (11), and (12). The 
model advanced is evaluated against experiments and numerical simulations of aerosol 
deposition in straight ducts and circular bends. The surface is assumed to be perfectly 
adsorbing, that is, the rebound coefficient χ  is taken as zero in (6). Calculations have 
been performed using a three-dimensional finite-volume CFD code OpenFOAM. 

2.1 Aerosol deposition in straight ducts 
First we examine the performance of the model for the deposition of particles in a 

vertical duct flow, when the gravity force does not exert direct action on the deposition 
rate. It is a common convention to describe the deposition rate of particles from 
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turbulent flow by the dependence of the deposition coefficient *w mj J+ u≡ Φ , where 
 is the bulk volume particle fraction, on the particle inertia parameter mΦ τ+ . In line 

with the primary mechanism governing the process of deposition, the entire range of 
particle inertia may be subdivided into three regimes: the diffusion regime ( 1τ+ < ), the 
turbophoresis regime (1 100τ+≤ ≤ ), and the inertia regime ( 100τ+ > ). The deposition 
process of the diffusion regime is mainly governed by Brownian and turbulent 
diffusion. In addition, some driving forces that cause transport of submicron particles 
(e.g., thermophoresis in non-isothermal flow) can play a significant role. In the situation 
when the diffusion mechanism plays the leading role, j+  declines monotonously with 
τ+  as a result of a decrease in the Brownian diffusivity as the aerosol size increases. The 
basis deposition mechanism of the turbophoresis regime is the turbulent migration of 
particles from the flow core, which is characterized by high-level velocity fluctuation 
intensity, to the viscous sublayer adjacent the wall. This regime features a strong 
dependence of j+  on τ+ . Kallio and Reeks [10] and McLaughlin [11] were the first to 
establish numerically the tendency of deposing particles to accumulate in the viscous 
sub-layer under the action of turbophoresis; this effect was reproduced in numerous 
later works. High-inertia particles ( 100τ+ > ) are weakly involved in turbulent flow of 
the carrier fluid, which causes the deposition coefficient j+  in a vertical duct to 
decrease with τ+ .  
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Figure 1: The deposition coefficient in vertical duct flows. (1-3) DIM: (1) Re = 10000, (2) Re = 20000, 
(3) Re = 50000, (4) experiment by Liu and Agarwal [12], (5) DNS by McLaughlin [11], (6) LES by 

Wang et al. [15], (7) DNS by Marchioli et al. [13], (8) DNS by Marchioli et al. [14]. 

Fig. 1 presents the predictions of the deposition coefficient for the pipe flow 
conditions which correspond to experiments by Liu and Agarwal [12]. To focus 
attention on the deposition mechanisms caused by the interaction of particles with 
turbulent eddies, the gravity and lift forces are neglected and hence . In Fig. 
1, the deposition coefficients obtained for duct flows using DNS [11, 13, 14] and LES 
[15] are shown as well. Note that, in the diffusion and turbohoresis regimes, the 
deposition process is mainly governed by the interaction of particles with near-wall 

0i wF F= =
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turbulent eddies. Therefore, the deposition rates determined in round pipe and flat 
channel flows are hardly distinguishable. As is clear from Fig. 1, the DIM properly 
captures the dependence of j+  on τ+  at 100τ+ < . The deposition coefficient predicted 
for high-inertia particles is found to systematically deviates from the measurements, 
because the model does not predicts a decrease in j+  with τ+ . Thus, the DIM can be 
successfully employed in predicting the deposition rate in the diffusion and 
turbophoresis regimes. 

2.2 Continuous flow field in circular bends  
In what follows we focus our attention on the deposition of aerosol particles in 

bends. Hydrodynamic structure of these flows is complex. It is characterized by the 
existence of curved streamlines and recirculating regions. The key nondimensional 
parameters that govern the flow are the Reynolds number defined as Re m fDU ν=  and 

the Dean number defined as 1/ 2
0De= Re R  where 0 2 bR R D≡  is the curvature ratio. For 

high Dean numbers, the flow in the bend is mainly governed by the centrifugal force 
which changes cardinally the flow pattern as compared to that in the straight duct. Fig. 2 
show, respectively, the streamlines of the mean flow in the midplane and the 
streamlines of the secondary flow for the deflection angle of 90°. The main features of 
the flow in the bend consist in separating the mean flow from the inner side, displacing 
it to the outer side, and generating the secondary flow in the form of a symmetric pair of 
counter-rotating helical vortices. 

 
Figure 2: The streamlines of the mean flow in the midplane of the bend and secondary flow in the bend 

for the deflection angle of 90o at Re = 10000 and De = 4225. 

2.3 Aerosol deposition in circular bends 
The total process of aerosol deposition can be measured by the penetration of 

particles which is defined as the ratio of the particle flow rates in the outlet and inlet 
sections of the bend, outlet inletG Gξ = , or by the deposition efficiency, 1η ξ= − . Fig. 3 
presents the deposition efficiency predicted in the 90° bend under the conditions 
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corresponding to experiment by Pui et al. [16] for =10000, =4225, Re De 0R =5.6, and 

p fρ ρ =755. The inertia of particles is quantified by the Stokes number defined as 

St= 2 p mU Dτ . In these circumstances, the deposition of particles is caused by the 
simultaneous action of diffusion, turbophoresis, gravity, and centrifugal force. 
However, the dominating mechanism is the centrifugal force due to the curvature of the 
main flow and the formation of the secondary flow. As is clear from Fig. 4, the effect of 
the Stokes number predicted by the DIM is in good agreement with both experimental 
data [16] and simulations [17, 18].  

0 0.4 0.8 1.2 1.6 St 

0.4

0.6

0.8

2
3
4

 

 

1

0.2

η  

 
Figure 3: The effect of Stokes number on the deposition efficiency in the 90o bend. (1) DIM, (2) 

experiment by Pui et al. [16], (3) LES by Breuer et al. [17], (4) LES by Berrouk and Laurence [18]. 
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Figure 4: The effects of curvature ratio and Stokes number on the penetration of particles in the 90o bend. 

(1-3) DIM, (4-6) experiment by McFarland et al. [19]: (1, 4) R0 =4, (2, 5) R0 =10; (3, 6) R0 =20. 

Fig. 4 demonstrates the effects of and curvature ratio and Stokes number on the 
penetration of particles in the 90° bend at =10000. Predictions are compared with 
experiments performed by McFarland et al. [19] in a wide range of curvature ratio. It is 

Re
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obvious that the centrifugal effect increases as the curvature ratio decreases. Therefore, 
the penetration falls with both increasing St  and decreasing 0R . As is clear, the DIM 
reasonably reproduces these effects. Some distinction between the predictions and the 
measurements is observed at small Stokes numbers, when the DIM overestimates the 
deposition rate. 
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Figure 5: The effects of particle size and bend angle on the deposition efficiency. (1-3) DIM, (4-6) 

experiment by Peters and Leith [20]: (1, 4) 45o; (2, 5) 90o; (3, 6) 180o. 

Fig. 5 compares the deposition efficiency as a function of bend angle with 
experimental data by Peters and Leith [20] at  = 203000 and Re 0R  = 5. These 
experiments were carried out in bends of D  = 0.152 m at a mean velocity of 20 m/s, 
and hence they were the first to be directly applicable to industrial bends. As is clear 
from Fig. 5, the deposition efficiency increases for a given particle size. Taking into 
consideration a great uncertainty of measurements, Fig. 5 indicates that the DIM can 
reasonably describe the deposition of aerosols at such high Reynolds numbers which are 
typical of industrial applications. 

3 CONCLUSIONS  
The model stems from a kinetic equation for the probability density function of 

velocity distribution of particles whose response times do not exceed the integral 
timescale of fluid turbulence. The salient feature of the DIM consists in expressing the 
particle velocity as an expansion in terms of the properties of the carrier fluid, with the 
particle response time as the small parameter. By this means, the problem of modelling 
the dispersion of the particulate phase reduces to solving a sole equation for the particle 
concentration. Thus, computational times are seriously shortened as compared to full 
two-fluid Eulerian models. The model presented is capable of predicting the main trends 
of particle distribution including the effect of preferential accumulation due to 
turbophoresis.  

The DIM has been incorporated in a CFD code OpenFOAM and coupled with fluid 
RANS in the frame of two-way coupling. Simulations of aerosol deposition in straight 
ducts and circular bends have been performed. The results of deposition efficiency 
obtained using the DIM are found to be in encouraging agreement with both 
experimental data and Lagrangian tracking simulations coupled with fluid DNS or LES. 
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