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Abstract. The explicit discontinuous Galerkin scheme presented in this paper may be

considered as a predictor corrector approach. The predictor is based on a solution in the

small which takes into account the time evolution within the grid cell only. The locality of

this approach allows the introduction of a time-consistent local time stepping in a natural

way. This functionality can drastically improve the scheme’s efficiency when calculating

highly time dependent problems. The necessary solution in the small can be obtained e.g.

by a Taylor series expansion as well as special Runge-Kutta schemes. This numerical

discretization is applied to several test cases, such as a two dimensional simulation of a

mixing layer and a three dimensional simulation of the flow past a sphere. In addition,

results of the parallel performance of the proposed scheme are given.
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1 INTRODUCTION

For the simulation of unsteady flow problems on large scale parallel hardware, an
explicit discontinuous Galerkin (DG) scheme is a good choice. A major disadvantage of
an explicit DG scheme may be the global time step restriction to establish stability. This
restriction depends on the space increment, on the degree of the polynomial approximation
and on wave speeds for advection terms or on diffusion coefficients for diffusion terms and
may cause inefficiency. One reason can be the size of the grid cells. A small grid cell
will cause small time steps. If we need the small grid cells for the spatial resolution,
then a small time step is necessary to capture the time development. But, the small
grid cell may also be imposed by the grid generator due to a complex geometry, e.g., at
corners. Another class of problems occurs, if the time evolution of the process is only
weakly connected with the fastest wave speed. In this case the time step is kept small
due to the fast wave speed, while the time evolution is connected with a smaller speed. A
typical example is low Mach number flow, where the flow transport may fully determine
the time evolution of the process, while the fast acoustic waves determine the time step in
an explicit approximation. In the following, we will describe a method to overcome these
problems and focus ourselves to unsteady problems and explicit DG schemes.

2 THE DISCONTINUOUS GALERKIN SCHEME

2.1 Weak formulation

Without the loss of generality, let us consider the scalar advection-diffusion equation

u(~x)t + ~∇ ·
(

~fa(u(~x)) − µ∇u(~x))
)

= 0, (1)

where ~fa denotes the advection flux. We will only show the key ingredients for deriving the
weak formulation. The reader will find a complete step-by-step explanation for equation
systems and handling of viscosity in Gassner et al.5 and Lörcher et al.7.

We will next introduce the DG framework by subdividing our domain Ω into non-
overlapping spatial grid cells Qi. Our numerical DG solution is then defined as

u
∣

∣

∣

Qi

≈ ui(~x, t) :=

N
∑

j=1

ûj
i (t)φj(~x) for all ~x ∈ Qi. (2)

The ûj
i are the time dependent degrees of freedom (DOF) and the basis functions

{φj(x)}j=1,...,N span the space of polynomials with degree ≤ P over the spatial grid cell
Qi. To keep things simple, we will suppress in the following the index i in the notation
of our numerical solution ui and φi.

To derive the weak formulation, we first multiply the equation (1) by a test function
φ = φ(~x), integrate over an arbitrary space-time cell Qn

i := Qi × [tn, tn+1] and perform a
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spatial integration by parts:

∫

Qn

i

utφ d~xdt +

∫

∂Qn

i

(

~fa − µ~∇u
)

· ~n φ dsdt−

∫

Qn

i

(

~fa − µ~∇u
)

· ~∇φ d~xdt = 0. (3)

For the diffusive part of our equation which contains second order derivatives, we proceed
with a second integration by parts of the viscous volume integral part in (3):

∫

Qn

i

µ~∇u · ~∇φ d~xdt =

∫

Qn

i

~∇u · µ~∇φ d~xdt =

∫

∂Qn

i

uµ~∇φ · ~ndsdt −

∫

Qn

i

u∇ ·
(

µ~∇φ
)

d~xdt. (4)

The integration by parts is used three times, forth and back, under the assumption that
the volume integral is calculated from data inside Ωn

i and only the surface integral covers
the interaction between the grid cells. The objective is to lift a jump at the boundary
between the functional values from the interior and the interface state into the discrete
variational formulation, see Gassner et al.5 in addition.

We then end up with the weak formulation of the advection-diffusion equation

∫

Qn

i

utφ d~xdt −
∫

Qn

i

~fa · ~∇φ d~xdt +
∫

Qn

i

µ~∇u · ~∇φ d~xdt+

∫

∂Qn

i

~ga · ~nφ dsdt−
∫

∂Qn

i

~gd · ~nφ dsdt +
∫

∂Qn

i

gs
[

~∇φ · ~n
]

−

dsdt = 0 ,
(5)

where the test function φ runs through all the basis functions. Here, [.]− denotes the
internal evaluation at the boundary of Qn

i , the term ~ga denotes the numerical advection

flux, the term ~gd denotes the numerical diffusion flux and gs := µu − [µu]− denotes
the additional scalar diffusion flux. u denotes the numerical solution in grid cell Qi

without any restrictions on the equation system type. Because our approximation u is
discontinuous across element interfaces, we have to introduce numerical flux functions to
guarantee both the stability and consistency of the discretization. We use in this work
the HLLC flux, see Toro8.

For nonlinear flux functions, the space-time integrals in (5) have to be computed in an
approximate way. While this could be done using Gaussian quadrature formulae in space
and time, we need to find a way to get approximate values at the space-time Gauss points.
This has to be done in an explicit way, since we are interested in an explicit scheme.

2.2 Space-time prediction

To get a high order scheme in space and time, we need a high order accurate approxi-
mation of the values at the time Gauss points. We therefore construct a local space-time
approximation v = v(~x, t) for ~x ∈ Qi and t ∈ [tn, tn+1]. We search the space-time solution
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for the following Cauchy problem

vt + ~∇ ·
(

fa(v) − fd(v, ~∇v)
)

= 0,

v(~x, t = 0) = un
∗
(~x), ∀~x ∈ ℜd,

(6)

where un
∗

is the DG polynomial in the grid cell Qi at time level tn extended in ℜd.
We note that the calculation of the exact solution for this problem is due to the non-
linearity impractically costly. However, considering the ’limited’ accuracy of the resulting
DG discretization, only a high order accurate approximation of this problem is needed.
An efficient way to construct such an approximation is to use a Taylor expansion in
space and time with appropriate order, see Lörcher et al.6 and Gassner et al.5. The
derivatives of the space-time expansion are approximated using the so-called Cauchy-
Kowalevsky procedure, see Dumbser and Munz3 for an efficient way of implementing
a Cauchy-Kowalevsky procedure for non-linear problems. In practice, every technique
for the solution of an initial value problem could be chosen, as long as the result is an
analytical space-time solution. We can also construct the approximative solution using
a continuous extension Runge-Kutta Galerkin (CERKG) method, see Gassner4 for more
information.

2.3 Local time stepping

This space-time setting allows to perform a high order time accurate and fully conser-
vative explicit local time stepping, where each cell within the computational domain runs
with its own optimal time step. Via Taylor expansion or the CERK method, necessary
values at the cell boundaries can be reconstructed in time. It is therefore ensured that
no information that has to be exchanged with the neighbors will be lost during the time
updates. In the following, the methodology of the local time stepping is briefly outlined.

A sequence of four time steps with three adjacent grid cells in Figure 1 starting from
a common time level t0 = 0 holds as a starting point:

After the determination of the local time steps, which are assumed to be different in
our example due to the local stability restriction, a predictive approximate solution in
the space-time cells Qi × [t0i , t

1
i ], in our example for i = 1, 2, 3 is calculated. These space-

time polynomials are stored. We note that after this step the DOF ~̂u0
i at the time level

t0i are not needed any longer and may be overwritten. First, the volume integrals are
calculated for each element Qi. They rely only on the local space-time polynomials. The
contribution of these terms are added to the DOF of the old time level. We call these
values ~̂u∗

i . Next, the surface flux contributions involving neighboring grid cells have to be
considered.

The local time stepping algorithm relies on the following evolve condition. The update
of the DOF can only be completed, if

tn+1
i ≤ min

{

tn+1
j

}

, ∀j : Qj ∩ Qi 6= ∅ (7)
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Figure 1: Sequence of steps 1-4 of a computation with 3 different elements and local time stepping

is satisfied. This condition guarantees that all the data for the interface fluxes are avail-
able. In our example, the first grid cell satisfying this condition is Q2. So Q2 can now
be evolved to t12. To do so, the flux contributions at the right and left cell interface have

to be computed and its contribution is then added to the local ~̂u∗

2. The flux integrals are
calculated from t = t02 to t = t12 at the right interface ∂Q2+ 1

2

and the left interface ∂Q2− 1

2

.
The arguments for the numerical flux functions at the time Gaussian points are obtained
from the left and right space-time polynomials.

In order to keep this calculation exactly conservative as well as efficient, the flux contri-
butions computed for the evolution of Q2 are added simultaneously to the corresponding
neighbors ~̂u∗

1 and ~̂u∗

3 with the minus sign. Then the update for Q2 is completed and the
DOF at the new time level t12 are known. We can now start the procedure again: a new
space-time polynomial is constructed in Q2 × [t12, t

2
2] and the volume integral contribution

is added to the local DOF ~̂u1
2, now named by ~̂u∗

2.
If boundary values at the left are given, now Q1 satisfies the evolve condition and can

be advanced to t11. As before, the volume integral contribution is already added. But in

this case, also a part of the flux contributions has already been added to the ~̂u∗

1 during the
previous evolution of Q2. Thus, only the missing flux contributions, which are sketched
in the lower left corner of Figure 1, have to be added to the ~̂u∗

1 in order to get the ~̂u1
1.

Namely, on the interface ∂Q1+ 1

2

, the flux integral has to be computed with a quadrature

formula from t12 to t11. As before, the flux integral computed on this shared interface is
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not only added to ~̂u∗

1, but also to ~̂u∗

2. The time interval, for which the flux contribution
at the interface shared by an element Qi and an adjacent element Qj has to be computed

when evolving ~̂u∗

i to ~̂un+1
i , is generally

[t⋆ij , t
n+1
i ] = [max(tni , tnj ), tn+1

i ]. (8)

In this manner, the algorithm continues by searching for elements satisfying the evolve
condition (7). At each time, the interface fluxes are defined uniquely for both adjacent
elements, making the scheme exactly conservative. The presented local time stepping
algorithm minimizes the total number of time steps for a computation with fixed end
time. However, it is not difficult to introduce some common global time levels as needed
for example at the end of the computation. This procedure has absolutely no influence
on the accuracy of the underlying numerical scheme.

3 NUMERICAL EXAMPLES

We will show applicability and performance of the numerical scheme for different test
cases in the following.

3.1 Parallel performance

For testing the scaling capabilities of our proposed method, we chose an example where
a perfect load balance was to achieve. We were using the so-called manufactured solution
technique for the three-dimensional compressible instationary Navier-Stokes equations:
When forcing an exact solution, this results in an inhomogeneous source term on the
right hand side of the Navier-Stokes equations that is put into the code. The problem was
set up with periodic boundaries so that the boundary communication will not differ from
the inter-processor communications. The size of the computational problem was increased
exactly the same way as the number of processors for calculation was increased. This way,
we kept a constant load in computation as well as in communication. Table 3.1 shows
the good scale-up efficiency for up to 4080 processors with a constant load per processor.
The efficiency when calculating on N processors is calculated as the calculation time on
one processor divided by the time needed for a calculation on N processors.

Number of pro-
cessors

1 1000 2197 4080

Efficiency [%] - 99.1 97.8 98.8

Table 1: Scale-up efficiency of the HALO code.

3.2 Two-dimensional mixing layer

For this two-dimensional example, we adopted the situation simulated by Colonius,
Lele and Moin2 and Babucke, Kloker and Rist1. The initial condition for the mixing
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layer is the laminar solution to the steady compressible two-dimensional boundary layer
equations. The Mach number of the upper and the lower stream are Ma1 = 0.5 and
Ma2 = 0.25, respectively. The Reynolds number Re = ρ1u1δ/µ = 500 is based on the
vorticity thickness on the inflow

δ(x0) :=

(

∆u

|∂u/∂y|max

)

x0

, (9)

which is also used to normalize the length scales. The computational domain starts at
x0 = 30, which yields δ(x0) = 1, and extends to x = 900 and y = ±200. Velocities are
normalized with u1 and all other quantities by their corresponding values in the upper
stream. The flow is forced at the inflow with eigenfunctions found from the spatial vis-
cous linear stability theory, see Babucke et al.1 and references therein for more details.
The disturbances are composed of the fundamental frequency ω0 = 0.6293 and the three
subharmonics. The amplitudes of the eigenfunctions are normalized by their maximum
value of u1 and then scaled by the amplitude factor 0.002. In accordance to the sim-
ulation of Colonius et al.2, the phase shift is ∆Θ = −0.028 for the first, ∆Θ = 0.141
for the second and ∆Θ = 0.391 radians for the third disturbance. The shown N = 6
(7th order) calculation had a grid resolution in the region [30; 320] × [−12; 12] of 27 grid
cells in y-direction, corresponding to ∆y ∈ [0.65; 2.75] and 230 grid cells in x-direction
corresponding to ∆x ∈ [0.75; 4], resulting in ≈ 180000 DOF.

The Reynolds number is given by

Re =
max(ρ0) max(u0) δ

µ
=

1 · 0.5 · δ

µ
= 500 (10)

with

δ :=
max(u0) − min(u0)

max(∂u0

∂y
)

= 1, (11)

while the viscosity coefficient µ has the value 0.001. We plot in Figure 2 the vorticity
contour levels at t

T
= 68 and included the corresponding results of Colonius et al.2 for

comparison. The numerical results show good agreement with the reference data.
In the left plot of Figure 3, the maximum amplitude of u2 with respect to y as a function

of x is shown. In the first part of the domain, where the magnitude of the amplitudes are
small, the growth is nearly exponentially, showing good agreement with linear stability
theory. We furthermore plotted the amplification rate αi of the velocity u2 for the ω0

mode, based on the maximum amplitude shown in the left picture. The result is in good
accordance with linear stability theory.

3.3 Three-dimensional freestream injector

This calculation especially targets shock capturing and p-adaption capabilities of the
proposed numerical scheme, as we simulate a Ma = 1.4, Re = 30000 injection. The
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Figure 2: Mixing Layer. Vorticity contours in near-field mixing region at t

T
= 68 from contour level

−0.26 to level 0.02 with increment 0.04 are shown. The results from Colonius et al.2 are shown below.
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Figure 3: Maximum amplitudes of u2 (left). Amplification rate αi of u2 based on maximum amplitude
(right).

injection nozzle is designed according to devices used for gas injection devices of the
automotive industry. This problem also contains complex curved geometries that are
challenging for high order schemes. The calculation aims at an aeroacoustic simulation
of the instationary injection process, including the start up of the process. Results can
be validated with calculations performed with other codes, in-house as well as in indus-
try. Preliminary two-dimensional calculations already provided an insight regarding the
necessary grid resolutions and shock capturing strategies as well as a comparison with a
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commercial CFD. Figure 4 shows density contours from ρ ∈ [0.9; 1.3] kg/m3 at t = 1ms in
comparison with a commercial CFD tool. Our proposed DG scheme was 14 times faster,
producing even better results. The geometry of the three-dimensional injector itself is

Figure 4: Density distribution, proposed DG scheme 2nd order (left) and commercial CFD tool (right).

rather complex, see Figure 5, consisting of four kidney-shaped injection nozzles within
the cylindric injector and is assembled with unstructured hexahedra, allowing hanging
nodes and polygons at connection surfaces. This problem was calculated on a grid with

Figure 5: Geometry of the three-dimensional freestream injector.
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over 16 million DG DOF (4 million of hexahedral elements) on 500 up to 1000 processors.
Figure 6 shows a two-dimensional slice plane of the calculation (density distribution and
velocity streamlines) together with an isosurface plot of the density that brings out the
development of the flow. To illustrate the flow development, several streamlines have been
added. The picture presents an early phase of simulation where the injection process was
just started.

Figure 6: Density distribution and velocity streamlines of the three-dimensional freestream injector.
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3.4 Three-dimensional laminar flow past a sphere

The laminar time periodic flow around a sphere was set up to test the scheme’s ability to
handle unstructured hybrid grids and a p-adaption mechanism in three space dimensions.
We were solving the unsteady compressible Navier-Stokes equations with a free-stream
Mach number of Ma∞ = 0.3 and a Reynolds number, based on the injector diameter,
of Re = 300. The problem was discretized with a block-unstructured grid consisting of
prisms for the boundary layer, tetrahedra and hexahedra. Figure 7 shows the different
grid blocks and dimensions of the computational domain. P-adaption was arranged to
vary the polynomial degree p between 1 and 5 where each grid cell was allowed to adapt
every 500 time steps.

To demonstrate the calculation results, Figure 9 shows a three-dimensional view of
the instantaneous vortex measure λ2 for this calculation. The color indicates the velocity
magnitude. Here, one can easily see that the very large cells at the end of the wake cannot
provide the necessary resolution and are therefore producing large inter cell jumps of the
solution. Finally, Figure 8 on the next page shows the distribution of the local polynomial
degree p at end time tend = 1000.

Figure 7: Hybrid block-unstructured mesh for the sphere calculation.
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Figure 8: Distribution of the local polynomial degree at end time of the sphere calculation.

Figure 9: Instantaneous λ2 isosurface of the sphere.

4 CONCLUSION

In this paper we have shown an explicit discontinuous Galerkin discretization in two
and three space dimensions. The possibility of using local time steps will strongly increase
the efficiency for all problems which need different resolution in different regions of the
computational domain and in which the time step restriction for stability strongly varies
as a local function of element size, wave speed, viscosity and polynomial degree. Two-
and three-dimensional calculations were performed. They showed up that the scheme is
so far working as expected. With the integration of the VMS-LES technique, the scheme
is ready to aim at massively parallel large scale LES calculations.
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