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Abstract. An efficient dual time implicit approach is used to solve viscous turbulent 
flow around two bodies with general motion. The grid includes a background grid and 
two sets of grids around the moving bodies. Rotational and translational motions of two 
bodies are managed separately in this grid arrangement. In this paper the overset 
concept for hybrid grid is used and flow variables are interpolated with a simple 
method. An implicit dual time stepping method is used to discretize the unsteady two 
dimensional Navier-Stokes equations. −εk model is employed for turbulence modeling. 
To accelerate convergence, the local pseudo-time stepping and implicit residual 
averaging are applied. Comparison of results with the experimental and numerical 
data, show good agreement with both sources.  
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1 INTRODUCTION 
Nowadays simulation of unsteady compressible flow around moving bodies can be 

found in aerospace literature. Since the solution domain changes continuously in 
moving body problems, special care should be paid to retain the quality of grid. The 
simplest method for a moving boundary flow problem is to regenerate grid around the 
body after each step of its motion. Although this approach is desirable for structured 
grids [1], but it is a time consuming process. The other method is based on dynamic 
mesh [2-4]. In this approach the computational grid deforms locally by using a spring-
analogy type algorithm. This approach is a time consuming process because of 
repeating process. For large motions overset grid can be used [5-7]. In this method each 
body has its own grid. On each grid, chimera holes are defined in regions where the grid 
overlaps solid bodies belonging to the other grids. Advantage of chimera grid is 
simulation of several moving bodies with high quality grid around each of them. The 
disadvantage of it, is the large number of interpolations which is required in this 
method. The other method is using hybrid grids in moving boundary problems [8-11]. 
In this approach, solution domain is divided into three zones. As it seen in the next 
section, general motion of a single body can be simulated easily with these three zones. 
The advantage of this approach is that the number of node deletion/insertion process is 
minimized to almost nothing. Even in large translational displacements only a few 
elements merge together. 

This method was used by Ref.10 to simulate the rotational/oscillational motion of a 
two-dimensional body. For the solution of unsteady Navier-Stokes equations they used 
upstream splitting method of AUSM [12]. Later on Alisadeghi et al modified the 
method of Ref.10 to provide a smoother grid movement in the solution domain. They 
solved unsteady viscous flow around a single body in motion. Extension of the work of 
Ref.11 to inviscid flow simulation of two bodies in motion with respect to each other 
was carried out by Salehi et al [13]. In the present work, the method of Ref.13 is 
generalized for the solution of viscous turbulent flow around two bodies in relative 
motion with respect to each other. For this purpose boundary conditions of Refs 
[11&13] are modified as well.  

Governing equation of viscous turbulent flow are solved using implicit dual time 
stepping scheme of Refs. [4 &14]. An explicit Runge-Kutta multistage scheme is 
applied for iterating the solution in pseudo time in each time step. Convergence 
acceleration is increased with local pseudo-time stepping and implicit residual 
averaging [15]. Finally computational results are compared with experimental data. 
Also to demonstrate correct performance of the present method different benchmark 
problems, defined in this paper, are solved. 

2 GRID CONFIGURATION 
The general motion of a moving body is a combination of translational and rotational 

motions therefore the subdivision of solution domain is divided into three zones. The 
third zone, as shown in Fig.1a, is a background Cartesian grid that is generated in 
solution domain. 

In addition to the background grid, around body A two other zones of grids are 
generated. The first zone is body A and the surrounding grid fixed to the body and 
moves with it, and the second zone has a squared boundary and contains the grid 
surrounding the first zone. In translational motion of body A first and second zones will 
translate with the body but in rotational motion only the first zone will rotate with the 
body A. The background grid and these two surrounding grids are called grid A. So in 
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this way, general motion of body A will be simulated with the least node 
deletion/insertion and interpolation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The body B will have only rotational motion so any type of grid (structured, 

unstructured or hybrid grid) can be generated around it. As shown in Fig.1a triangular 
unstructured gird with a circular boundary is generated around it in this study; this grid 
is called grid B. Grid B is overset on the background grid. In the present study, solution 
strategy is solving the flow field on two sets of grids A and B, separately. In the process 
of flow solution on grid A, the regions of intergrid boundary of grid A is excluded from 
the solution domain. So the values of this region are interpolated from the previous 
solution done on grid B and the boundary values on the intergrid boundary of grid B are 
interpolated from the solution previously calculated on grid A. For more details about 
grid generation approach and overset implementations see Ref. 13  

3 SOLUTION ALGORITHEM 

The two dimensional unsteady compressible Navier-Stokes equations in the 
Cartesian coordinate system  

∫∫∫ Ω∂Ω
=−−−+

∂
∂ 0))()(( dxGGdyFFdydxw
t

vivi  (1) 

 
where ),,,( Evuw ρρρ=  is the vector of conserved quantities, iF  and  represent the 

convective fluxes and  and describe the diffusion fluxes as following: 

iG
vF vG

a)

Background Grid
Intergrid Boundary
of Grid A

Second Zone

First Zone

Grid B

Intergrid Boundary
of Grid BGrid A

a) b)

Fig 1. Grid configuration surrounding body A and B.  
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where rr vuvuP ,,,,,ρ  and  denote density, pressure, Cartesian velocity components, 

relative velocities and total energy, respectively. The relative velocities are defined as  
E

mrmr vvvuuu −=−= ,  (3) 
where  and  are the Cartesian velocity components of control-volume boundary. 
, 

mu mv

xxτ xyτ  and yyτ are the stress tensors and , are the heat flux vector components. The 
viscosity coefficient

xq yq

μ , is calculated according to Sutherland’s law. The equation (1) are 
augmented by the equation of state, which for a perfect gas is given by, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−−=

2
)1(

22 vuEP ργ  (4) 

For turbulent modeling, a two-equation ε−k  model is used. The turbulent transport 
equations can be written in form of mean flow equation (1). 

∫ ∫∫∫ Ω∂ ΩΩ
=−−−+

∂
∂ dxdySdxGGdyFFdydxw
t t

v
t

i
t

v
t

i
tt ))()(( ∫  (5) 

Where ),( ρερkwt = , ,  represent the turbulent convective fluxes and ,  
describe the effect of turbulent viscous diffusion. The source term  describes 
production and dissipation of turbulence quantities. The turbulent eddy viscosity is 
calculated from: 

i
tF i

tG v
tF v

tG

tS

ε
ρμ μ

2kCt =  (6) 

In this work, the turbulence equations are solved with the main flow equations in a 
fully-coupled manner. Equation (1) is applied to each control volumes with area of 

and can be written as iA

0)()()( =−+ wDwRAw
dt
d

iiii  (7) 

Where  is the sum of the convective fluxes and viscous fluxes in )(wRi x  and  
directions and  is the numerical dissipative term [16] which is added to Eq. (1). 
This  is combined with fourth and second differences with coefficients that depend 
on the local pressure gradient. This term is introduced in Ref.16. 

y

)(wDi

)(wDi

A fully implicit time discretisation (in real time) of Eq. (7) can be written as: [17] 
0)()()( 1111 =−+ ++++ n

i
n

i
n

i
n

i wDwRAw
dt
d  (8) 

In this paper a second order accurate Backward Difference Formula [18] is used as 
follows 
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 (9) 

A Dual Time Stepping metod is used to solve the coupled nonlinear equations (9) at 
each time step [18]. This can be done with the solution of the following equation. 
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 (10) 

τ  is pseudo-time in each time step, and  is the unsteady residual given by )(* nwR
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Equation (10) is a modified steady state problem in pseudo-time and is solved by 
using explicit Runge-Kutta multistage method. To accelerate convergence, local 
pseudo-time stepping and implicit residual averaging are used. The four-stage Runge-
Kutta scheme is given by, 
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n and m are real and pseudo time stages respectively.  
With the numerical dissipative term in the first stage of Eq. (13) computational 

efficiency will increase. The pseudo-time step for each cell which is limited by stability 
considerations is given as 

)
3

2
,(min

1

tACFL
N

j
j

i
i

Δ
=Δ

∑
=

λ

τ  (14) 

where j  denotes edge of the corresponding cell, and 
xvyu Δ−Δ=λ  (15) 

For accelerating convergence, the local pseudo time stepping and residual smoothing 
are used in this paper. The real time step can be chosen based on accuracy 
considerations. 

At the far field, non-reflecting boundary conditions are used based on the 
characteristic analysis. At the solid wall boundary, the no-slip condition needs to be 
imposed. For satisfying no-slip condition in unsteady flow, the particles of fluid just 
above the surface of airfoil move with the airfoil speed. The pressure value at the solid 
wall is calculated by extrapolating from the values of adjacent cells. The wall function 
conditions are also considered for near wall turbulent calculations. 

4 OVERSET IMPLEMENTATION 
As mentioned earlier, governing equations are solved on two sets of grids iteratively. 

At each time step, the system of equations are solved on grid A which has outer flow 
boundary and its own intergrid boundary, as shown in Fig.1. For this purpose boundary 
conditions on intergrid boundary A are interpolated from the most updated values flow 
variables on grid B. From these results on grid A, flow variables along the intergrid 
boundary B are interpolated to provide boundary conditions for the solution of flow 
field on grid B. After the solution of flow field on grid B, the same process can be 
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repeated until the error between intergrid boundary values of two successive iterations 
for both grids A and B becomes less than a desired value  

5 NUMERICAL RESULTS  
In this section the capability of the present method for the simulation of fluid flow 

over moving body are evaluated. The method is validated by comparison of its result 
with experimental data and other numerical results.  

In order to verify the solution algorithm on two sets of grids as described before, the 
turbulent steady state flow with Mach 0.729, Re=6,500,000 at 2.79degrees angle of 
attack over RAE 2822 airfoil is considered on two different grid configurations. The 
airfoil is set in grid A and grid B is clean. Grid configurations shown in Fig.2 are, a) 
clean grid close to body A, and b) clean grid far from body A. In Fig.2 a grid B is close 
to grid A, forming an overlapping region. In Fig. 3b, however grid B is far from grid A 
and no overlapping region is formed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 shows the grid configuration around RAE 2822. Figs.4 and 5 illustrate the 

comparison of pressure coefficient distribution and surface force coefficient distribution 
on the surface of airfoil with the experimental data [19]. Results obtained on both grids 
are in excellent agreement with each other and with experimental data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b)
a) 

Fig 2. a) clean grid close to body A, and b) clean grid far from body A  

Fig 3. Grid configuration surrounding 
airfoil RAE 2822    
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Fig 4. Comparison of surface pressure coefficient 
distribution  ; present results and experimental data; 
airfoil RAE 2822 at M= 0.729,Re=6500000,α=2.79º 

Fig 5. Comparison of surface force coefficient 
distribution; present results and experimental 

data; airfoil RAE 2822 at M= 0.729, 
Re=6500000,α=2.79º  

 
Again to demonstrate that the solution strategy is independent from the grid 

arrangement and also the accuracy of interpolation stencil used in the overlapping layer, 
flow field of 1st test case is solved on two different grids shown in Fig.6. These include, 
a) body set in grid A and grid B is clean, and b) body is set in grid B and grid A is clean. 

 
 
 
 
 
 
 
 
 b a 
 
 
 
Fig.7 shows the comparison of surface pressure coefficient distribution on two grids 

with each other and with experimental data [19]. Same comparison is made for surface 

Fig 6. a) Body A and clean grid B, and b) Body B and clean grid A 
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force coefficient distribution in Fig.8. Again results obtained on two grids are in 
excellent agreement with each other. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Comparison of surface pressure coefficient 
distribution; present results and experimental data; airfoil 

RAE 2822 at M= 0.729, Re=6500000, α=2.79º 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 illustrates turbulent kinetic energy around airfoil. As shown in Fig.9 the 

disturbance of flow behind shock have increased in upper surface of airfoil because of 
reversed pressure gradient resulting of shock. 

Fig. 8 Comparison of surface force coefficient 
distribution; present results and experimental data; 

airfoil RAE 2822 at M= 0.729, Re=6500000, 
α=2.79º  
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In third case, steady state flow at Mach 0.75, Re=6200000 and α=2.81º for RAE 2822 
are solved on the grids of Fig.6. Comparison of pressure coefficient distribution 
obtained on these two grids with each other and with the experimental data [19] is 
shown in Fig.10. Same comparison is shown for surface force coefficient distribution in 
Fig.11. Results of the present study agree very well with each other and with 
experimental data. 

Fig 9. Turbulent kinetic energy around airfoil a) Body A, and
b) Body B  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 10. Comparison of surface pressure coefficient distribution; 

sent results and experimental data; airfoil RAE 2822 at M= 0.75
Re=6200000, α=2.81º 

 pre , 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 11. Comparison of surface force coefficient distribution; 

present results and experimental data; airfoil RAE 2822 at M= 
0.75, Re=6200000, α=2.81  
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Fig.12 shows the contours of Mach and produced shock in upper surface of airfoil. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 12. Mach contours and shock wave a) Body A, and b) Body B   
 
As the forth test case, we would like to solve the unsteady flow over the oscillatory 

pitching airfoil of NACA 0012, defined in AGARD CT5 test case [20], which has been 
widely studied in the literature. Grids of Fig 2 are used for the simulation of unsteady 
flow of CT5. Consider the harmonic pitching motion of airfoil about the quarter chord 
of it with the following time dependent varying angle of attack, 

  tm ωααα sin0+=

Where αm is the mean angle of attack, α0 is the amplitude of its oscillation, and ω is 
the angular frequency of the motion, related to reduced frequency, k, by 

∞

=
U

ck
2
ω

 
In this relation,  is the free stream velocity and c is the chord length of the airfoil. 

Flow conditions are 
∞U

6
0 105.5Re,0814.0,51.2,016.0,755.0 ×=====∞ kM m αα  

The above problem is solved on two different grids shown in Fig.2. As shown in 
Fig.2 a, the oscillating airfoil would be within the grid A. Grid B is close to grid A, 
forming an overlapping region. In Fig.3b, however the oscillating airfoil is set within 
grid A. Grid B is far from grid A and no overlapping region exists. 

Numerical calculation of unsteady flow is started from the steady state solution of 
Mach 0.755 with Re=5500000 flow over NACA 0012 airfoil at 0.016 degrees angle of 
attack on both grids. The variation of normal force coefficient obtained from the present 
method on both grids is compared with experimental data in Fig.13. Results obtained on 
both grids are in excellent agreement with each other. In addition to this, results of the 
present study agree very well with the results of experiment [20]. The difference 
between numerical results and experimental data observed here has been reported by 
other researchers in the literature, as well [9& 21]. This difference can be eliminated if 
αm is changed slightly. 
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Fig 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13. Comparison of normal-force coefficient loop; prese

sults and experimental data, AGARD CT5 test case; airfoi
NACA 0012  

nt 
re l  

 
 
Once again to demonstrate grid configuration independency of the algorithm in a 

moving body problem, CT5 test case is solved on grids of Fig.6. The variations of 
normal force coefficient obtained from the present method on both grids are compared 
with the experimental data in Fig. 14. Results obtained on both grids are in excellent 
agreement with each other, and with the experimental data 

 
 

Fig 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14. Comparison of normal-force coefficient loop; prese

sults and experimental data, AGARD CT5 test case; airfoi
NACA 0012 

nt 
re l  

 
 
For translational-rotational motion, the fifth test case is defined. Two cases with the 

same physics of flow field are considered, in Fig.15. Two NACA0012 airfoils are 
located at a distance equal to 140 chords from each other. In the first case, the left airfoil 
is stationary and the oscillating airfoil at the right moves toward the left with Mach 0.5 
in a stationary air. In the second case, the airfoil at the left and the air move together 
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with Mach 0.5 and Re=10,000 toward the stationary oscillating airfoil at the right. 
Parameters governing the oscillating airfoil are 0814.0,51.2,0 0 === km αα . Unsteady 
solution is obtained using local pseudo time steps, and real time step of 2.55E-2 s. Lift 
and drag coefficient histories of the right airfoil in both cases are compared with each 
other in Figs.16 and 17. The excellent agreement shows the accuracy of the algorithm 
for simulation of unsteady problems. The little difference between the two results is due 
to the differences between the grids generated around the right airfoil in two cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 15. Illustration of test definition for rotational-
translational motion of two bodies with respect to 

each other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 16. Lift coefficient history of NACA0012 airfoil for 
rotational- translational motion, cases 1 and 2  
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Fig 17. Drag coefficient history of NACA0012 
airfoil for rotational- translational motion, cases 

1 and 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 CONCLUSION  
The moving mesh algorithm of Ref. 13 is extended to solve two-dimensional 

compressible viscous turbulent flow around two bodies in relative motion with respect 
to each other. Definition of two grid zones has provided the capability of simulating 
translational and rotational motion of bodies easily. This algorithm is validated on 
different grid configurations to prove accuracy of interpolation stencil used in this 
study. The correct performance of algorithm strategy on two sets of grids A and B, 
sequentially has been demonstrated on various grid configurations. Compressible flow 
is solved on two moving body benchmark problems, defined in this study, to show 
capability of the present algorithm in capturing accurate results. 
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