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Abstract. Heat transfer analysis in oil and gas pipelines is of major importance for the 
prediction and prevention of paraffinic deposits and hydrate formations, which can 
interrupt the oil and gas flow and result in large financial losses. This is specially the 
case for deep sea pipelines used in offshore production. In such pipeline, hydrates can 
be formed, even at relatively high temperatures within the oil-gas-water mixture 
pumped from the production wells, due to the high pressures involved. Traditional 
methods to prevent paraffinic deposits and hydrate formations are generally based on 
thermal insulation, depressurization of the line, injection of hot dead oil, pigging and 
injection of chemical inhibitors. Recently, active heating systems have been under study 
to maintain the fluid temperature above a critical value in order to avoid the formation 
of solid deposits. The main objective of this paper is to examine an optimal control 
approach for a typical heating system during shutdown conditions. A quadratic cost 
functional is minimized through the solution Riccati´s equation. 
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1 INTRODUCTION 

Offshore oil production has constantly become more challenging for several reasons, 
including among others, the increasing length of deep-sea pipelines required for the oil 
transportation from wells to platforms [1]. The thermal performance of such subsea 
systems is critical, because the produced fluid cannot undergo significant temperature 
reductions as it flows in the pipeline at high pressures [2]. Therefore, flow assurance is a 
key point for the design of subsea petroleum systems in deepwater. Its analysis involves 
the prevention and control of solid deposits that can originate inside the production 
fluid, as a result of heat transfer to the surroundings. Therefore, heat transfer analyses in 
petroleum and gas pipelines are extremely important for the prediction and prevention 
of paraffinic wax deposits and hydrate formations, which can interrupt the flow and 
cause large financial losses (figure 1) [3].  

There are different kinds of deposits that can be formed in pipelines used in offshore 
production. The physical and chemical characteristics of the produced fluids may 
facilitate the accumulation of natural gas hydrates, wax, and other substances. These 
accumulations may cause reduction of flow area and increase the wall roughness, thus 
increasing the head loss and reducing the flow capacity [4]. Traditional methods to 
manage the solid deposits are generally based on depressurization of the line, injection 
of hot dead oil, pigging and injection of chemical inhibitors. However, one of the main 
strategies to mitigate flow assurance issues is to minimize heat losses from the system 
by using thermal insulation and/or active heating [5]. 

 

 
Figure 1: Hydrate block 

Thermal insulation layers are added to the pipeline in order to maintain a minimum 
temperature of the flowing fluid. On the other hand, when passive thermal insulation is 
not sufficient to prevent solid deposits development in the system, active heating is 
required to maintain the fluid temperature above a critical value. 

The main objective of this paper is to examine an optimal control approach for a 
heating system used to avoid the fluid temperature drop, during typical production 
shutdown conditions. The control is based on temperature measurements supposedly 
available on the external surface of the pipeline, which are used to reconstruct the 
temperature field inside the fluid via the solution of an inverse problem of state 
estimation. The state variables are considered as the transient temperatures within a 
pipeline cross-section and the state estimation problem is solved recursively with the 
Kalman filter [11-15]. The temperatures predicted with the Kalman filter are then 
utilized in a control approach for a heating system used to maintain the temperature 
within the pipeline above the critical temperature causing the formation of solid 
deposits. The pipeline is heated through its external surface and the imposed heat flux is 
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considered as the control variable. A linear quadratic controller is utilized in this work 
and the associated quadratic cost functional is minimized through the solution of 
Riccati’s equation [6]. 

2 PIPELINE HEATING SYSTEM 

In subsea fields, the relatively hot petroleum (at temperatures as high as 80 oC) is 
extracted from wells located on the bottom of the ocean, which can be 2000-3000 
meters deep. The surrounding seawater at this depth is at a temperature of 
approximately 4 oC, thus causing significant cooling of the petroleum flowing through 
long pipelines on the ocean floor. The temperature of the produced fluid needs to be 
maintained above the critical value in the entire pipeline in order to prevent the 
formation of solid deposits. If the steady flow conditions are interrupted due to a system 
shutdown, a transient heat transfer analysis is then needed to establish the time period 
that the produced fluid temperature is above such critical temperature. During this time 
period, the operators are required to reach a decision in terms of the necessity to use the 
available technologies to avoid the formation of solid deposits. From the practical 
experience, it has been observed that the need for the injection of chemical inhibitors of 
solid deposits in the pipeline is considerably reduced when heating is utilized. The 
pipeline can be heated by several methods, but typical concepts are based on the so-
called direct electrical heating system (DEH) [7] and indirect electrical heating system 
(IEH) [8]. In the direct electrical heating system, electric current flows axially through 
the pipe wall causing Joule heating in the fluid. On the other hand, in the indirect 
electrical heating system, the electrical current flows through heating elements (e.g., one 
or more electrical cables) on the pipe surface.  

3 PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

The idealized problem considered in this work consists of the cross-section of a 
pipeline, represented by a circular domain filled with a stagnant fluid, thus not taking 
into account the pipe wall. The fluid is considered as homogeneous, isotropic and with 
constant thermal properties. The direct heating system described above is assumed for 
this analysis. The heat flow rate resulting from Joule’s effect is considered in the form 
of a transient heat flux appearing in the boundary condition of the fluid domain.  

This idealized pipeline will be treated here as a linear transient heat conduction 
problem in a single medium. By also considering axial symmetry, the dimensionless 
formulation of this heat conduction problem in cylindrical coordinates is given by 
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Here, ∞T is the surrounding environment temperature,

coefficient, k and α are the 
the external radius, Bi is the Biot number
the external surface resulting from the direct heating.

The mathematical formulation governing t
(1-2), was solved with the finite volume method 
this purpose was verified by using 
Integral Transform Technique.

4 STATE ESTIMATION AND

State estimation problems 
system, based on observations
as on a model for the system evolution for the state variable
evolution model, together with the observation model
representation of the dynamical 

The vector  is called the state vector and contains the variables to be 
dynamically estimated. The vector advances in time in accordance with the state 
evolution model, defined in the form

                                      

where f is, in the general case, a non
control input to the system 

The observation model describes the dependence between the state variable and the 
measurements  through the general, possibly non

                                           

where  are available at
the measurement noise or uncertainty. 

For the classical linear time
model is written in the form

                                       

where  is the linear evolution matrix of the state variable 
matrix. The state uncertainty or noise 
with zero mean and covariance 

The linear observation equa
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)  

is the surrounding environment temperature, h is the convective heat transfer 

the fluid thermal conductivity and diffusivity, respectively
is the Biot number and ( )tq  is the uniform heat flu

the external surface resulting from the direct heating. 
The mathematical formulation governing the heat conduction problem given

solved with the finite volume method [10]. The computer code developed for 
this purpose was verified by using an analytical solution obtained with the Classical 
Integral Transform Technique. 

STATE ESTIMATION AND  OPTIMAL CONTROL 

problems are used to predict the time varying state of a dynamical 
observations  obtained during the evolution of the system, as well 

for the system evolution for the state variables . This model, known as 
evolution model, together with the observation model, constitutes 

dynamical system [6, 11, 12]. 
is called the state vector and contains the variables to be 

estimated. The vector advances in time in accordance with the state 
tion model, defined in the form 

                                                     

is, in the general case, a non-linear function of the state variables 
control input to the system u and of the state noise or uncertainty vector 

The observation model describes the dependence between the state variable and the 
through the general, possibly non-linear, function , 

                                                                 

are available at times , k=1, 2, 3, …. The vector 
the measurement noise or uncertainty.  

linear time-invariant discrete state estimation problem, the evolution 
written in the form 

                                                                                       

is the linear evolution matrix of the state variable  and 
The state uncertainty or noise  is assumed to be a Gaussian random variable 

with zero mean and covariance F. 
The linear observation equation is given in the form 
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linear function of the state variables , of the 
and of the state noise or uncertainty vector . 

The observation model describes the dependence between the state variable and the 
, given by 

                                                                 (4) 

 represents 

discrete state estimation problem, the evolution 
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is assumed to be a Gaussian random variable 
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where is the measurement vector, 
direct transmission matrix
random variable with zero
noises are assumed to be mutually independent.

In the application under stu
representation of Eqs. (1.a
temperatures at each of the volumes 
flux imposed on the boundary. 
that different quantities in the formulation are not exactly known, such as the Biot 
number. A typical control to 
temperature above the critical temperature for the formation of deposits
temperature is approached by the fluid during cooling periods, such as production 
shutdown. 

For the application of the control strategy in accordance 
theory for linear problems, the evolution and observation models are considered to be 
deterministic and given by 

                                      

                                      

where the dot superscript represents the time derivative.
For the case under analysis in this work, the aim 

problem is to find the control inputs 
difference between the fluid temperature field 
implementation of the contro

 
                                      
 

                                           
 
where  and  refer to the steady values of the control input and state variables, 
respectively. Hence,  and 
values.   

In terms of the linear quadratic regulator problem, the optimal values of the control 
input  are obtained by minimizing the following quadratic cost functional 

                                      

where the weighting matrices 
 

The solution to the optimal control problem is the state feedback control law 

                                      

where the discrete-time state feedback gain 
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is the measurement vector,  is the linear observation matrix
direct transmission matrix. The observation noise  is assumed to be a Gaussian 
random variable with zero-mean and known covariance G. The state and observation 
noises are assumed to be mutually independent. 

In the application under study, the evolution model is given by the finite
(1.a-c). The state vector contains the values of the 

temperatures at each of the volumes and the control variable  is given by the heat 
flux imposed on the boundary.  Uncertainties in the evolution model come from the fact 
that different quantities in the formulation are not exactly known, such as the Biot 

ypical control to a pipeline heating system aims at keeping
above the critical temperature for the formation of deposits

temperature is approached by the fluid during cooling periods, such as production 

For the application of the control strategy in accordance with the optimum control 
theory for linear problems, the evolution and observation models are considered to be 
deterministic and given by [6, 11,12]: 

                                                       

                                                                      

where the dot superscript represents the time derivative. 
For the case under analysis in this work, the aim of the associated optimal control 

problem is to find the control inputs  (the boundary heat flux) that minimizes the 
fluid temperature field and a desired profile 

implementation of the control strategy we consider [6, 11]: 

                                                                      

                                                                     

refer to the steady values of the control input and state variables, 
and are considered as deviations from their steady state 

In terms of the linear quadratic regulator problem, the optimal values of the control 
are obtained by minimizing the following quadratic cost functional 

                                               

where the weighting matrices  and  are symmetric positive definite.    

optimal control problem is the state feedback control law 

                                                        

time state feedback gain K  is of the form 
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is the linear observation matrix and D is the 
is assumed to be a Gaussian 

The state and observation 

dy, the evolution model is given by the finite-volume 
contains the values of the 

is given by the heat 
Uncertainties in the evolution model come from the fact 

that different quantities in the formulation are not exactly known, such as the Biot 
keeping the fluid 

above the critical temperature for the formation of deposits. Such critical 
temperature is approached by the fluid during cooling periods, such as production 

with the optimum control 
theory for linear problems, the evolution and observation models are considered to be 

                                                                      (7) 

                            (8) 

of the associated optimal control 
(the boundary heat flux) that minimizes the 

. Thus, for the 

                             (9) 

                              (10) 

refer to the steady values of the control input and state variables, 
are considered as deviations from their steady state 

In terms of the linear quadratic regulator problem, the optimal values of the control 
are obtained by minimizing the following quadratic cost functional [6, 11] 

                         (11) 

are symmetric positive definite.     

optimal control problem is the state feedback control law [6, 11] 

                            (12) 
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The matrix S is the steady state solution to the discrete

              

In the steady state, 
 
              
 
Thus, the control input 

                                      

However, when state variables are not directly available for 
must be built to estimate the state variables from the input and output variables of the 
system. The most widely known 
readily applied to linear models with additive Gaussian noises
study. The algorithm of the Kalman filter is presented below in tables 1 and 2, as 
applied to the state estimation problem given 

 
 

Table 1 – Discrete time evolution update equations

                                                       
 

Table 2 

                                                     

                                                      

                                                      

 
where K k is Kalman’s gain matrix and 
variables. 

 

5 RESULTS AND DISCUSSI

In order to examine a test 
down in the flow through th
stagnant fluid was assumed to be initially at the uniform temperature of 65
circular domain with external diameter of 0.1682
were assumed constant and given by 
1826.80 J kg-1 oC-1. The objective of the heating system was to drive the stagnant fluid 
temperature to a reference value of 30
lowest predicted temperature in the domain reached the critical value of formation
solid deposits, which was assumed to be 20 
number was taken as 1. 

For the prediction of the state variables, one single sensor was considered available, 
located at the surface of the circular domain. 
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is the steady state solution to the discrete-time Riccati equation

   

, and the above equation becomes

                            

 can be calculated from the control law (12) as:

                                        

when state variables are not directly available for control, an observer 
must be built to estimate the state variables from the input and output variables of the 

The most widely known optimal observer is the Kalman filter, 
to linear models with additive Gaussian noises, such as the one under 

The algorithm of the Kalman filter is presented below in tables 1 and 2, as 
applied to the state estimation problem given by Eqs. (5) and (6) [13, 14,

Discrete time evolution update equations 
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        1
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−
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Table 2 –  Measurement update equations 

       ( ) 1T T
k k k k k k k

−− −= +K P C C P C G   

  ( )k k k k k k
− −= + −x x K z C x   

  ( )k k k k
−= −P I K C P  

is Kalman’s gain matrix and Pk is the covariance matrix of the estimated state 

RESULTS AND DISCUSSIONS 

a test case involving typical conditions resulting from a shut
down in the flow through the pipeline, a hypothetical situation was simulated where the 

s assumed to be initially at the uniform temperature of 65
external diameter of 0.1682 m (6”). The thermophysical properties 

assumed constant and given by k = 12.54 W m-1 oC-1, ρ = 933.59 kg 
. The objective of the heating system was to drive the stagnant fluid 

temperature to a reference value of 30oC.  The heating system was turned on when the 
lowest predicted temperature in the domain reached the critical value of formation
solid deposits, which was assumed to be 20 oC. For the results presented below, the Biot 

For the prediction of the state variables, one single sensor was considered available, 
located at the surface of the circular domain. Figure 2 presents the simulated measured 

. Dulikravich 
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equation 

             (14) 

, and the above equation becomes 

           (15) 

can be calculated from the control law (12) as: 

                (16) 

control, an observer 
must be built to estimate the state variables from the input and output variables of the 

is the Kalman filter, which can be 
such as the one under 

The algorithm of the Kalman filter is presented below in tables 1 and 2, as 
14, 15]: 

 

(17.a) 

(17.b) 

 
 

(17.c) 

(17.d) 

(17.e) 

is the covariance matrix of the estimated state 

case involving typical conditions resulting from a shut-
e pipeline, a hypothetical situation was simulated where the 

s assumed to be initially at the uniform temperature of 65oC in a 
thermophysical properties 

933.59 kg m-3 and cp = 
. The objective of the heating system was to drive the stagnant fluid 

C.  The heating system was turned on when the 
lowest predicted temperature in the domain reached the critical value of formation of 

C. For the results presented below, the Biot 

For the prediction of the state variables, one single sensor was considered available, 
simulated measured 
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temperatures, both during the cooling and heating periods. The simulated measurements 
contained Gaussian errors with a constant standard deviation of 3oC. 
 

 
Figure 2: Measured temperature on the external surface 

 

The Kalman filter was used to estimate the overall fluid temperature field in the 
domain, from the simulated noisy measurements shown in figure 2. Figures 3-5 present 
a comparison between the predicted and the exact temperature fields, for dimensionless 
times of τ = 0.69, 0.72 and 1.1, respectively. Figures 3-5 clearly reveal an excellent 
agreement between exact and predicted temperatures, even for the large standard 
deviation of the observation errors of 3oC. 

 

  
(a) (b) 

Figure 3: Comparison between (a) predicted temperature distribution and (b) exact temperature distribution 
for τ = 0.69 

  
(a) (b) 

Figure 4: Comparison between (a) predicted temperature distribution and (b) exact temperature distribution 
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for τ = 0.72 

  
(a) (b) 

Figure 5: Comparison between (a) predicted temperature distribution and (b) exact temperature distribution 
for τ = 1.1 

 

The temperatures predicted by the Kalman filter in the whole domain were used in 
the control strategy described above. The control strategy was applied with the 
weighting matrices Q = R = I  (identity matrix). Figure 6 shows the time evolution of the 
predicted temperatures at two positions in the domain (R = 0 and R = 1). One can 
clearly see that the heating is turned on when the lowest temperature in the domain (at R 
= 1) reaches the critical value. Then, the temperatures at these two positions gradually 
approach the reference value through the action of the control system on the boundary 
heat flux. The optimal heat flux obtained through the control strategy described above is 
presented in figure 7. This figure shows that the heat flux attains large values when the 
heating is turned on, but gradually tends to a constant value that provides a uniform 
temperature in the medium within the time range of interest. 

A comparison of figures 2 and 6 shows the effect of the Kalman filter on the 
temperature at the position R = 1. It is also important to note that a completely erratic 
heat flux would be obtained if the measurements shown in figure 2 were directly used in 
the control approach.  

 

 
Figure 6: Evolution of the predicted temperatures with the action of the optimal control 
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Figure 7: Optimal heat flux on the boundary surface 

 

6 CONCLUSIONS 

The objective of this paper was to apply an optimal control strategy to a heating 
system, in order to avoid the formation of solid deposits in pipelines. The optimal 
control input was determined with a linear quadratic regulator, where a quadratic cost 
functional was minimized through the solution Riccati’s equation. Predicted 
temperatures in the whole domain, obtained with the Kalman filter, were used in the 
control strategy instead of the direct measurements. The Kalman filter was capable of 
providing accurate estimates for the temperature field in the region, even for large errors 
in the observation model. With the present approach, the control strategy could be 
effectively applied and the temperature in the region was maintained above the critical 
one during the time range of interest. 
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