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Abstract. This paper investigates the methods of determining the convective velocity of 
the Sommerfeld radiation condition for incompressible Navier-Stokes equations in 
primitive variables. The Sommerfeld radiation condition for incompressible flows is a 
one-dimensional convective equation and has been widely used for outflow boundary 
condition of spatial developing flows. The definition of its convective velocity is unclear 
and the selection of appropriate value for the convective velocity is a critical issue. 
Four decision methods of the convective velocity with finite difference method are 
considered: the mean velocity over the exit boundary, the arithmetic mean velocity of 
the maximum and the minimum velocities on the outflow boundary, the local 
instantaneous velocity, and the numerically evaluated convective velocity which is 
modified procedure of Orlanski’s open boundary condition. These methods are applied 
to two test problems for comparison. The first case is two Lamb dipoles traveling in a 
slow uniform flow. The second case is a two-dimensional impulsively starting jet flow. 
The numerical evaluated convective velocity produces minimum distortion and 
deformation of a vortex and provides no reflection. 
 
 
1 INTRODUCTION 

Many problems in fluid dynamics are defined in unbounded domains. These domains 
have to be truncated in order to compute flow fields in finite computational domains. 
The artificial boundary conditions are needed to be defined on the boundaries of 
truncated computational domain. The formulation of these boundary conditions, 
especially the outflow boundary conditions, is a very important and difficult issue. 
Although the flow field near the outflow boundary depends on the flow outside the 
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computational domain, the velocity outside the domain is unknown and unavailable. 
The incompressible Navier-Stokes equations are elliptic, so that unsuitable outflow 
boundary conditions may influence the numerical solution in the whole domain and 
yield numerical instability. The problem of outflow boundary conditions for unsteady 
incompressible flow has been a matter of discussion and is still a subject of active 
studies. More details about the issue of outflow boundary conditions are found in 
review articles by Gresho1, 2, 3 and Sani and Gresho4. 

One of the most successful outflow boundary conditions for numerical simulations of 
unsteady incompressible flows by the finite difference method is the Sommerfeld 
radiation condition, which is also called the convective boundary condition. The 
Sommerfeld radiation condition for incompressible flows is a one-dimensional 
convective equation and the convective velocity of this condition is an arbitrary value. It 
is defined as “a representative value” of the normal velocity at the exit (see Gresho1, 2, 3). 
The Sommerfeld radiation condition has been employed in many investigations and the 
convective velocity has been defined in different manners. Pauley et al.5, Salvetti et al.6, 
Verzicco et al.7, Lim and Redekoppa8 and Ruith et al.9 reported that the value of 
convective velocity is not critical to the numerical solution. On the other hand, Hasan et 
al.10 mentioned that the quantity of the convective velocity was loosely defined and was 
determined by trial and error in previous literatures. Ol’shanskii and Staroverov11 also 
pointed out that the good choice of the convective velocity is quite important. Therefore, 
it is an open issue how to determine which value is appropriate for the convective 
velocity. 

The main objective of this paper is to investigate the proper choice of the convective 
velocity for the Sommerfeld radiation condition. We select four methods of determining 
the convective velocity and apply them to two test cases for two-dimensional 
incompressible viscous flow, which are two Lamb dipoles traveling in a slow uniform 
flow and a two-dimensional impulsively starting jet flow. We will demonstrate the 
sensitivity of the results to the method of determining the convective velocity. 
 

2 NUMERICAL METHOD AND  BOUNDARY CONDITIONS 

2.1  Numerical method 
The governing equations are the Navier-Stokes equations and the equation of 

continuity in two-dimensional Cartesian coordinates for viscous incompressible flow, 
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These equations have been nondimentionalized using a characteristic velocity and a 
characteristic length. The spatial discretization of these equations is the finite difference 
method on a non-uniform staggered grid. The convective terms in the momentum 
equations are discretized with the fully conservative second order finite difference 
scheme of Morinishi et al.12. The remaining terms are discretized with second order 
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central difference schemes. Time integration of governing equations is carried out using 
P2 pressure correction method, which is a kind of fractional step methods, proposed by 
Armfield and Street13 with Kim and Moin boundary condition14. The second order 
Adams-Bashforth method is used for convective terms and the Crank-Nicolson method 
is used for viscous terms. The overall accuracy of this method is second order in time. 

2.2 Outflow boundary conditions  
We consider the Sommerfeld radiation condition for incompressible flows in two-

dimensional Cartesian coordinates. These take the form 
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where  is the outflow direction and  is the convective velocity, which is a 
representative value of the normal velocity at the outflow boundary. These conditions 
are similar to Taylor’s hypothesis of frozen flow. The value of   has been defined in 
different manners by different authors in many literatures. Therefore, a number of 
choices for  are possible. It is not clear which value of  is appropriate.  

x cU

cU

cU cU

Equations (4) and (5) are discretized by a first order backward difference scheme in 
space on the staggered grid at the outflow boundary as shown in figure 1 and are 
integrated by explicit Euler method in time.  The resulting finite difference forms are 
given as follows, 
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Figure 1: Staggered grid system near outflow boundary of computational domain. 
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The following four methods for determining the convective velocity are compared.
 SRC1: The mean velocity over the outflow boundary.  
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In this equation,  is the outflow rate and H  is the height of the outflow boundary.  
This condition has been used in Poiseuille-Bénard flow15, 16, 17, plane turbulent wake18, 
boundary layer separation5, turbulent confined coannular jet19, turbulent flow over a 
backward-facing step20, and many others. Because  is constant and independent of y , 
normal velocity  calculated explicitly from equation (6) automatically satisfies 
the global mass conservation, i.e. the outflow rate equals the inflow rate at an each time 
step, as shown by Gresho2. No correction of 
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global mass conservation.  

SRC2: The arithmetic mean velocity of the maximum and the minimum normal 
velocities at the outflow boundary.  
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This method was proposed by Yoshida et al.21 based the experimental investigation of 
the convective velocity of Taylor’s hypothesis for large scale coherent structures in 
turbulent round jet by Zaman and Hussain22. They concluded that a single convection 
velocity should be used. But the structure convection velocity is generally neither 
unique nor easily measurable. They suggested to use the average of the velocities across 
the shear region, instead of the structure convection velocity. In numerical simulations, 
it is impossible to beforehand know the structure convection velocity and the shear 
region. Then we proposed to simply approximate the average velocity of shear region 
on the outflow boundary by the arithmetic mean of the maximum and minimum 
velocities.  

SRC3: The local instantaneous velocity at previous time step.  
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This method has been employed by Nataf 23, Jin and Braza24, and Hoarau et al.25. The 
value of  is local and dependent ony , so that the global mass conservation is not 
satisfied automatically. The outflow velocity  is corrected uniformly over the 
outflow boundary to ensure that the outflow rate  balances the inflow rate , 
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SRC4: The numerically evaluated convective velocity. This method was originally 
designed by Orlanski for hyperbolic problems26. The convective velocity is calculated 
locally at the closest interior point and at the previous time level. Orlanski’s original 
finite difference representation used a leapflog method. In this work, the original 
condition is modified using the explicit Euler method and the first order backward 
difference in the following way, 
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We apply the same constraint of the original Orlanski method to , i.e., cU
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The lower limit  does not allow information to come from outside to inside the 
computational domain. The upper limit 

0cU =
1Δc INU x −= Δt  is due to the Courant-

Friedrichs-Lewy condition for numerical stability. This method is similar to that used by 
Han et al.27 for linear hyperbolic and parabolic problems. Although Orlanski proposed 
this condition for hyperbolic problem, we apply this method to incompressible fluid 
flows that have elliptic character. Because the convective velocity is calculated locally, 
the global mass conservation is not satisfied automatically. Then, the correction scheme 
prescribed by equation (9) is also employed for SRC4. 
 

3 RESULTS 
The four methods for determining the convective velocity of the Sommerfeld 

radiation condition are applied to two test cases. The first case is two Lamb dipoles 
traveling in a slow uniform flow. The second case is a two-dimensional impulsively 
starting jet flow.  

3.1 Two Lamb dipoles traveling in a slow uniform flow  

The Lamb dipole is the exact solution of Euler equations28, assuming that vorticity 
 is related to function ω ψ  by 2kω ψ=  inside a circular region with radius cR , while 

the exterior flow is irrotational. The stream function of the Lamb dipole in polar 
coordinates (  is  ),r θ
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The function  and  are the zeroth- and first-order Bessel functions of the first kind, 
respectively.  is the propagation velocity of the dipole in a inviscid fluid. The value 
of k  is determined by the first zero point of ,  
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The dipole is superimposed on a slow uniform flow. The velocity of the uniform flow is 
0.1, and the propagation velocity of the dipole is . Then the initial traveling 
velocity of the dipole is . The radius of dipole is  and the Reynolds 
number is 

0 9.LU =
R1 0.U = 1 0.c =

500νcRe UR= =

3

. 
The computational domains and the boundary conditions are shown in figure 2. 

Computations are performed with two different domain sizes. One is a short domain and 
the other is a long domain corresponding to  and , respectively. We refer 
to the solution of the long domain as “exact”, because the outflow boundary is located 
far downstream. The grid space is uniform in xdirection with 1250 points for the short 
domain and 1875 points for the long domain. The grid points in direction are 700 and 
uniform in . Two Lamb dipoles are located in series and centered at (2.5, 
0.0) and (4.0, 0.0). Figure 3 shows the initial vorticity field, where red color contours 
represent positive values and blue color contours represent negative values of vorticity. 
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Figure 2: Computational domains and boundary conditions for the two Lamb dipoles convecting flow. 

0 1 2 3 4 5
-2

-1

0

1

2

6

y

x
Figure 3: Contours of vorticity of the initial dipoles. Red color contours represent positive vorticity,  
and Blue color contours represent negative vorticity. 

Calculations by the four SRC methods were performed in both short and long 
domains with the time step Δ . Figure 4 shows instantaneous vorticity field at 

 with the different SRCs in the short domain and in the long domain. In figure 4(a),  
0 01.t =

6t =
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Figure 4: Vorticity contures of the two Lamb dipoles at t = 6 for different SRCs. 
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Figure 5: Vorticity contures of the two Lamb dipoles at t = 8 for different SRCs. 
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two Lamb dipoles merge into one dipole and the center of dipole passes through the 
section at  in the long domain.  In the short domain, figure 4(b) - (e), the merged 
dipole approaches the outflow boundary. The dipole with SRC1 distorts and stretches in 
the tangential direction of outflow boundary as shown figure 4(b). Figure 4(c) and 4(d) 
show similar distortion of the vortex. In contrast, the vortex with SRC4 in figure 4(e) 
moves straight downstream with little distortion. Figure 5 shows vorticity filed at . 
In the long domain as shown figure 5(a), the merged dipole has already passed over the 
line at x . For SRC1 and SRC3, the dipole rebounds at the outflow boundary and 
induces secondary vortices outside of the main vortices, that have strong opposite sign 
vorticity shown in figure 5(b) and 5(d). This behavior of the dipole is similar to the 
result of numerical simulation for the vortex dipole rebound from a nonslip wall by 
Orlandi29. Figure 5(c) shows deformation of the vortex, although there is no strong 
reflection of vorticity. Figure 5(e) shows the vorticity field obtained by using SRC4. 
The distribution of vorticity in figure 5(e) is almost agree with that of corresponding 
region in the long domain shown in figure 5(a). This demonstrates that SRC4 provides a 
smooth passage of vortex structure and gives no reflection of vorticity. 
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8t =

3.2 Two-dimensional impulsively starting jet flow 
The second test problem is a two-dimensional impulsively starting jet flow. The 

computational domains and boundary conditions are shown in figure 6. The width of 
nozzle is the characteristic length. An inlet flow at the entrance of the nozzle is 
discharged impulsively into a quiescent fluid. A uniform velocity profile is imposed at 
the inlet. The Reynolds number based on the nozzle width and the uniform velocity is 
100. The impulsively discharged flow from the nozzle forms a vortex dipole in the front 
region of the jet.  

Two computational domains are also used in this test. One is the short domain and 
the other is long domain. The length of nozzle is 0.5 in both domains. The short domain 
is  and with  mesh. The long domain is 

 and  with 1250  mesh. The grid space in x  direction is 

Figure 6: Computational domains and boundary conditions for the two dimensional impulsively jet flow. 
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Figure 7: Vorticity contures of the two-dimensional jet at t = 15 for different SRCs. 
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Figure 8: Vorticity contures of the two-dimensional jet at t = 25 for different SRCs. 
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 uniform and is nonuniform in y direction. 
Figure 7 shows instantaneous vorticity field at  with the different SRCs in the 

short domain and in the long domain.  As indicated in figure 7(a), a vortex dipole is 
formed at the front of jet through roll up of the jet shear layer and moves downstream. 
The front of the dipole passes through the cross section at  in the long domain. 
The dipole of SRC1 is slightly expanded in transverse direction and induces vorticity 
sheets at the outflow boundary. The behaviors of SRC2 and SRC3 are almost similar to 
SRC1. The vorticity distribution obtained with SRC4 in figure 7(e) is in good 
agreement with that of long domain. 

15t =

6x =

Figure 8 shows instantaneous vorticity field at . For SRC1, SRC2, and SRC3, 
the dipole rebounds from the outflow boundary. Then the dipole splits two monopole 
vortices and each vortex travels along the outflow boundary. On the other hand, the 
result by SRC4 in figure 8(e) shows no reflection of vorticity. The dipole has smoothly 
passed through the outflow boundary and the trailing jet has been remained in the short 
domain. The vorticity distribution is quite similar to that in the corresponding region of 
long domain as shown figure 8(a).  

25t =

 

4 CONCLUSIONS  
The outflow boundary condition for the incompressible Navier-Stokes equations is 

studied. The Sommerfeld radiation condition is employed for calculations using the 
finite difference method. The four different methods of determining its convective 
velocity are compared in two test cases, which are two Lamb dipoles traveling in a slow 
uniform flow and a two-dimensional impulsively starting jet flow.  It is shown that the 
value of the convective velocity is critical to the solution in the interior domain. For the 
both test cases, the results of the numerically evaluated convective velocity (SRC4) 
show that the passage of the vortex dipole is very smooth and very good agreement with 
that of long domain. On the other hand, the other three methods yield large distortion of 
vertical structure and reflection from the outflow boundary. 
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