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Abstract. This paper presents a geometric multigrid approach for solving the sensitivity
equations derived by differentiating the Navier-Stokes equations with respect to control pa-
rameters. The considered control variables can be arbitrary flow parameters like the inflow
velocity or the control points of a boundary surface represented by NURBS. The SIMPLE
method with an embedded SIP solver (ILU) is employed as smoother in the framework
of V-cycles. The multigrid approach is examined with respect to the computational costs
for generic test cases, i.e., a channel flow over a bump with variable inlet velocity and a
channel with a parameter controlled NURBS surface.
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1 INTRODUCTION

Numerical flow simulation is a well-established field in modern engineering. Numerical
algorithms support practical experiments by providing cost-efficient and risk-free method-
ologies for flow engineers. Due to continuously increasing CPU power and the development
of more sophisticated algorithms a new research field got into the spotlight of interest.
The automated flow optimization process is an ongoing topic in todays research.

The major challenge is to provide algorithms which are able to deal with arbitrary
objective functionals depending on predefined design parameters (e.g., geometry defor-
mation, wall temperature, inlet velocity) and state variables (e.g., velocity, pressure, and
temperature distribution). The algorithms are also required to be fast and robust enough
to find an optimal solution within a short period of time, even if a large number of differ-
ent control parameters are considered. An example for such a challenging optimization
problem is the redesign of a technical component within an engine. In this case the com-
ponents geometry might be variable within certain bounds, as well as the temperature at
the surface or the velocity of the fluid before entering the engine. The objective of the
redesign could be, for instance, to minimize the pressure loss within the component, while
assuring an acceptable fluid temperature distribution.

Derivative-based methods are one approach to solve these optimization problems.
Therefore, it is necessary to compute the gradient of the objective functional. An effi-
cient way to compute this gradient is to solve the continuous sensitivity equations (CSE).
These equations arise from differentiating the Navier-Stokes equations with respect to
each design parameter. Solving these equations provides knowledge about the influence
of the different control parameters and allows to compute the functionals gradient. Ev-
ery control parameter generates an own set of CSE. Therefore, fast solving strategies are
necessary.

In this paper we present the theoretical background of the CSE. Thereafter, we in-
troduce the geometric multigrid concept applied to solve the CSE. The efficiency of the
solving strategy is examined for two generic design parameter test cases.

2 GRADIENT BASED OPTIMIZATION

A general optimization problem consists of a given objective functional J depending on
a set of state variables φ (e.g., velocity, pressure) and some control variables a (e.g., shape
parameters, inlet velocity) and probably some additional constraints F. In mathematical
notation this can be written as

min
a
J (φ (a) , a) subject to F (φ (a) , a) = 0. (1)

In a flow optimization problem the main constraints are the partial differential equations
which describe the flow field presented in Section 3. Other side constraints are also
conceivable, like restrictions to the inlet velocity to prevent transition to turbulence or
limitations to the maximal deformation of the fluid area due to geometrical reasons.
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Gradient-based optimization algorithms utilize functional evaluations as well as infor-
mation about the gradient of the functional, whose i-th component can be written as

dJ
dai

=
∂J
∂φj

∂φj
∂ai

+
∂J
∂ai

, (2)

where d/dai denotes the total derivative with respect to the control component ai. In
this formulation and below we use Einstein’s summation notation.

A sophisticated approach for computing the gradient is to calculate ∂φ/∂ai from the
sensitivity equations (described in Section 4) and to assemble the gradient from equation
(2). However, it is necessary to solve for each design parameter one sensitivity equation
system, hence the development of fast computation algorithms is of special interest.

3 FLOW EQUATIONS

The incompressible and steady flows of interest are modeled by the Navier-Stokes
equations. The conservation equations of mass and momentum can be written as

∂uj
∂xj

= 0, (3)

∂ (ρuiuj)

∂xj
− ∂ (µτij)

∂xj
= − ∂p

∂xi
+ ρfi (4)

with

τij =
∂ui
∂xj

+
∂uj
∂xi

, (5)

where ρ and µ represent the fluid density and dynamic viscosity, respectively, ui is the
i-th velocity component, p is the pressure, and fi is the i-th component of a body force.
The steady equation system is closed with proper boundary conditions – both Dirichlet
and Neumann conditions can be applied. In this paper we focus on Dirichlet boundary
conditions

ui = ūi on ΓD, (6)

where a prescribed velocity value ūi is set along the boundary. Solely at an outlet we
assume a zero gradient Neumann boundary condition, which is sufficient when the outflow
region is far enough from the main region of interest.

4 CONTINUOUS SENSITIVITY EQUATIONS

Two general approaches for computing the flow sensitivities are known and described
in detail in [6]. One method is discretizing the Navier-Stokes equations first and differ-
entiating the discretized system. Literature about this strategy is widley released, e.g.,
[8, 10, 14]. This approach is called discretize-then-differentiate and is often realized in
connection with an automatic differentiating software, working on the source code of the
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flow solver. We focus on the second method, the differentiate-then-discretize approach.
Hence the underlying state equations are differentiated first in order to obtain a continous
set of equations for the sensitivities. These equations are discretized and solved by any
numerical method.

The continuous sensitivity equations (CSE) according to an arbitrary control parameter
a can be obtained by implicit differentiation of the state equations (3) and (4). For sake
of simplicity we introduce following notation

∂ui
∂a

= saui
,

∂p

∂a
= sap,

∂µ

∂a
= saµ,

∂ρ

∂a
= saρ,

∂fi
∂a

= safi
. (7)

Using (7) the CSE become

∂sauj

∂xj
= 0, (8)

∂

∂xj

(
saρuiuj + ρsaui

uj + ρuis
a
uj

)
= −

∂sap
∂xi

+ saρfi + ρsafi
+

∂

∂xj

(
saµ τij + µsaτij

)
(9)

with

saτij =
∂saui

∂xj
+
∂sauj

∂xi
. (10)

If we assume that the parameter a has no influence on the fluid properties ρ and µ, as
well as on the body force fi, the equations (8) and (9) simplify to

∂sauj

∂xj
= 0, (11)

∂

∂xj

(
ρsaui

uj
)
− ∂

∂xj

(
µsaτij

)
= −

∂sap
∂xi
− ∂

∂xj

(
ρuis

a
uj

)
. (12)

It is necessary to close the CSE system. For this the boundary conditions need to be
differentiated with respect to the control parameter a as well. Hence, the zero gradient
condition is retained at the outlet, and the Dirichlet boundary conditions are implicitly
differentiated as done with the state equations. However, if a is a shape parameter, the
boundary geometry itself is affected by changes of the control parameter. For this the
Dirichlet boundary condition (6) must be stated more precisely as ui(x(a), y(a), z(a), a) =
ūi(x(a), y(a), z(a), a) on ΓD(a). Implicit differentiation of this condition, as described in
[4], yields

dui
da

=
dūi
da

on ΓD(a), (13)

⇔ ∂ui
∂a

+
∂ui
∂xj

dxj
da

=
dūi
da

on ΓD(a), (14)
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where d/da denotes the total derivative with respect to the shape parameter a. Using
equation (14) leads to the boundary condition for the sensitivity at the manipulable
boundary

saui
=

dūi
da
− ∂ui
∂xj

dxj
da

on ΓD(a). (15)

The sensitivity of the shape position dxj/da appears, as well as the gradient of the flow
velocities at the boundary ∂ui/∂xj.

The required parametrization of the control variable dependent geometry surface can,
for instance, be realized by using NURBS surfaces whose control point positions depend
on the design parameter a, as described in [1]. Thus, the surface coordinate vector can
be written as

x (s, t, a) =
n̂∑
i=1

m̂∑
j=1

Ni,p (s)Nj,q (t) Pi,j (a) s, t ∈ [0, 1] , (16)

where s, t are the normalized parametrization variables along the surface directions. n̂
and m̂ denotes the number of control points in each direction, p and q are the order of
the B-Spline basis functions N in the respective direction, and Pi,j(a) denotes the coor-
dinates of the (i, j)-th control point which is depending on design parameters. Utilizing
this parametrization towards the computation of dxj/da, the boundary condition for the
sensitivity (15) can be transformed into

sau =
dū

da
−∇u ·

(
n̂∑
i=1

m̂∑
j=1

Ni,p (s)Nj,q (t)
d

da
Pi,j (a)

)
on ΓD(a) (17)

as described in [13].

5 NUMERICAL SOLVING STRATEGY AND DISCRETIZATION

Before computing the flow sensitivities, the state equations (3) and (4) need to be solved
in every iteration. This is done using our in-house flow solver FASTEST. It applies a fully
conservative finite-volume approach to solve the incompressible Navier-Stokes equations
on a non-staggered, block-structured and cell-centered grid, see [3]. The implemented
solver for the sensitivity equations system (11) and (12) is embedded in the existing flow
solver.

Analogous to the Navier-Stokes equations the spatial discretization of the sensitivity
equation utilizes a finite-volume method with a collocated variable arrangement, in con-
trast to the commonly used finite element approaches [9, 12, 16]. The solution domain
is discretized into hexahedral (in general non-orthogonal) control volumes (CVs). Skip-
ping further details of the discretization (see, e.g., [5]), this procedure leads for the n-th
iteration to a linear equation system of the form

Ahsn,hu = 0, (18)

Bh
(
uN,h

)
sn,hu + Chsn,hp = Dh

(
uN,h, sn−1,h

u , sn−1,h
p

)
, (19)

5



J. Michaelis, J. Siegmann, G. Becker and M. Schäfer

where Ah,Bh,Ch and Dh are discrete operators resulting from the discretization proce-
dure on a grid with characteristic grid length h (e.g. maximum CV width). The operator
Bh depends on the state variables uN,h, which are predetermined in N iterations. Equa-
tion (19) is linear in sn,hu , the vector of unknown velocity sensitivities in the n-th iteration.
The unknown pressure sensitivities are represented by the vector sn,hp . The source term
operator Dh on the right hand side depends on the predetermined flow velocities and on
the sensitivities from the previous iteration (sn−1,h

u , sn−1,h
p ).

Due to the internal coupling of the pressure sensitivity and the sensitivities of the
velocity in equation (19), but the absence of the pressure sensitivity in the differentiated
continuity equation (18), a pressure correction algorithm of the SIMPLE type [5] with
an embedded SIP solver (ILU) is used to solve the equation system. This strategy is
analogous to the procedure solving the incompressible Navier-Stokes equations. This
algorithm can serve as a smoother in a geometric multigrid concept.

6 MULTIGRID METHODS

Conventional iterative solvers usually show a drastic increase of the computational
effort with decreasing grid spacing. In particular, for 3-dimensional problems the cost
swells rapidly. Using a Fourier series expansion of the error it is possible to show that a
solver as described in the previous section, removes efficiently errors with a wavelength of
about the characteristic control volume size h (see, e.g., [11]). Error components with a
smaller frequency, i.e., a longer wavelength, are only slowly eliminated.

Multigrid algorithms are based on the idea to solve an equation system involving a
hierarchy of meshes (see, e.g., [2, 7]). We employ a geometric multigrid algorithm where
the different grid levels are generated by coarsening steps from the finest grid.

The linear equation system (18) and (19) can be written shortly as

Lhsh = bh, (20)

where s summarizes the unknown sensitivities and the superscript h emphasizes the spa-
tial discretization. Although this is a linear system we employ the full approximation
scheme (FAS), a non-linear multigrid algorithm. For linear problems the linear multi-
grid algorithm and the FAS are analytically equivalent. However, in contrast to linear
multigrid algorithms, FAS does not approximate the error on different grid levels, but
improves directly the solution of the sensitivities on the different grids. In future studies,
this can be used for adaptive optimization methods, wherein the gradient is computed
simultaneously with low computational effort on the coarse grid levels. Utilizing an error
estimation it is possible to extend the multigrid cycle to finer grids during the optimiza-
tion process. Thereby, more accurate gradient approximations can be obtained near the
optimum. Furthermore some advanced techniques like τ -extrapolation base on the FAS
approach, see [15]. These reasons motivate the usage of the non-linear algorithm on a
linear problem as well. Hence, we write equation (20) in non-linear notation

Lh
(
sh
)

= bh. (21)
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The SIMPLE algorithm yields after m iterations towards an approximation of the
solution, which satisfies equation (21) up to a residual vector rh. The non-linear defect
equation reads:

Lh
(
sh
)

= bh

⇔ Lh
(
sm,h + sh − sm,h

)
− Lh

(
sm,h

)
= bh − Lh

(
sm,h

)
⇔ Lh

(
sm,h + eh

)
− Lh

(
sm,h

)
= rh, (22)

where eh = sh − sm,h is the current error on grid level h. The idea is to solve the defect
equation (22) on the coarser grid levels. Hence, the computed fine grid values are restricted
by a restriction operator R2h

h to the next coarser grid level (2h). For building up the new
discretization L2h on the coarser grid we can make use of the conservativity of the finite
volume method, e.g., the flux over the faces of the assembled coarse grid CV is equal to
the fluxes over the faces of the eight underlying fine grid CVs. After the restriction we
transform equation (22) into

L2h
(
R2h
h

(
sm,h

)
+ e2h

)
= R2h

h

(
rh
)

+ L2h
(
R2h
h

(
sm,h

))
, (23)

wherein the coarse grid variable s2h = R2h
h (sm,h) + e2h is defined and the known terms on

the right hand side are merged. We obtain the new coarse grid defect equation

L2h
(
s2h
)

= b2h, (24)

which is similar to equation (21) except for the grid spacing. Thus, it is possible to use in
turn coarser meshes to solve this defect equation. After finding an approximative solution
s̃2h for equation (24), by solving directly or employing further recursions using more grid
levels, it is necessary to adapt the error correction back to the fine grid. An interpolation
operator Ih2h prolongates the found coarse grid defect e2h to the fine grid

eh = Ih2h
(
e2h
)
≈ Ih2h

(
s̃2h −R2h

h

(
sm,h

))
, (25)

which can be used iteratively to update the previously computed fine grid solution

sh = sm,h + eh. (26)

This updated solution is iterated again by the SIMPLE algorithm to smooth high-frequency
errors appearing from the interpolations between the different grid levels. We use V-cycles
to move through the grid hierarchy.

The utilization of the above procedure causes an enormous acceleration in the compu-
tation of the sensitivities, as we will show in the next section.
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Figure 1: Geometric setup for 3-dimensional flow over NURBS-generated bump

7 VERIFICATION AND MULTIGRID ANALYSIS

For the verification of the multigrid implementation, a 3-dimensional channel flow over
a NURBS-generated bump in the middle section is analyzed. The channel geometry is
given in Figure 1. Its length is 0.9 m and the cross-section is quadratic with a height
and depth of 0.3 m each. The inlet is located at x = 0.0 m and the outlet is situated at
x = 0.9 m. All the others surrounding channel faces are impermeable walls. The bump
ranges from x = 0.3 m to x = 0.6 m, its peak reaches z = 0.1 m. A viscous fluid with
ρ = 1400 kg/m3 and µ = 10 kg/ms is used to assure a Reynolds number in the range of
10 for inlet velocities of about 0.1 m/s.

To generate a block-structured mesh the geometry is divided into three blocks, each
block has 64 CVs in each spatial direction. This allows to employ six grid levels for the
computation of the flow variables and the sensitivity values. For each grid coarsening step
we halve the number of nodes in each direction, ending up with only eight CVs per block
on the coarsest mesh (see Table 1).

Grid level 1 2 3 4 5 6
# CV 24 192 1536 12288 98304 786432

Table 1: Number of control volumes on the different grid levels

From literature (e.g., [3]) it is well-known that the computational cost scales approx-
imately linear with the number of CVs while applying a multigrid algorithm. The com-
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putation time for solving the sensitivity equation system is measured on a Intel Core2
Duo E8400 (3.00 GHz) with 4096 MB main memory. The measured time is averaged
over several runs to minimize temporal fluctuation. Another characteristic quantity is the
number of necessary fine grid iterations, which usually remain almost constant with grid
refinement (e.g.,[11]).

Two different control settings are examined to verify this typical multigrid behavior.
In the first test case the inlet velocity is set by a design parameter. In the second one the
surface of the bump is controlled by a shape variable.

7.1 Variable Inlet Parameter

We apply the following parabolic x-velocity profile at the inlet

u = 0.1α
y (0.3− y)

0.152

z (0.3− z)

0.152

m

s
, α ≥ 0, (27)

with the control parameter α. The y- and z-component are set to zero.
For the sensitivity computation V-cycles of maximum depth are performed, e.g., on

the second grid level a V-cycle over two grids is used, while on the finest grid level
a V-cycle over all six meshes is employed. On each grid level we perform 5 SIMPLE
iterations and restrict the obtained defect equation to the next coarser grid. Only on
the coarsest level 10 SIMPLE iterations are performed, before interpolating the error
correction back to the finer grids. On the way back to the finest grid 3 SIMPLE iterations
are used on each grid to smooth the high frequent errors resulting from the interpolations
between the hierarchical levels. For better comparability of the different sized V-cycles
the underrelaxation factors within the SIMPLE algorithm are identically chosen on same
grids. The sensitivity calculation is converged when the maximum residual value on the
finest mesh is smaller then 10−6.

The results are given in Table 2. Although the number of fine grid iterations is not
perfectly constant, the computational time increases almost linearly with the number
of CVs. This correlation is shown in Figure 2 where the computational time is plotted
against the number of control volumes in a double logarithmic diagramm. The continous
line shows the theoretically expected linear increase of the computational costs.

Scheme SG1 MG2 MG3 MG4 MG5 MG6
(# CVs) (24) (192) (1536) (12288) (98304) (786432)

Fine grid iterations 132 105 83 94 118 176
Time (sec) 0.05 0.13 0.43 3.50 41.18 510.66

Table 2: Multigrid behavior for variable inlet parameter
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Figure 2: Computational time over the number of control volumes (inlet sensitivity)

7.2 Variable Shape Parameter

In the second test case the design parameter β moves the positions of the control
points (CPs) of the NURBS surface, wherein the bump shape can be changed directly.
This test case is well known from literature [6, 12]. 9 CPs are defined to modify the bump,
see Figure 3. The four corner points are fixed to guarantee geometric continuity at the
channel walls, whereas the three CPs at x = 0.45 m can be translated in z-direction, i.e.,

Pi,2 (β) = P
(0)
i,2 + β ·

0
0
1

 , i = 1, . . . , 3, (28)

where P
(0)
i,2 is the initial position of the i-th CP at x = 0.45 m. Thus the bump can be

raised or lowered by varying β.
The V-cycles setup is the same as used for the inlet sensitivity test case, as well as

the underrelaxation parameters and the convergence criterion. We examine as before the
behavior of the number of fine grid iterations and the necessary time for the calculations
as the main indicators for computational costs. The results can be found in Table 3 and
Figure 4. The number of fine grid iterations remain almost constant on the finer grids
in agreement with the multigrid theory. Also the (only) linear increase of the computing
time with the number of CVs can be seen.
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Figure 3: Parameter controlled NURBS surface on the 5th grid level

Scheme SG1 MG2 MG3 MG4 MG5 MG6
(# CVs) (24) (192) (1536) (12288) (98304) (786432)

Fine grid iterations 165 100 86 102 126 127
Time (sec) 0.05 0.14 0.48 3.82 43.95 369.15

Table 3: Multigrid behavior for controllable bump surface design
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Figure 4: Computational time over the number of control volumes (shape sensitivity)

8 CONCLUSIONS

A geometric multigrid algorithm for solving the continuous sensitivity equations has
been presented in this paper. We introduced a general gradient based optimization prob-
lem and derived the continous sensitivity equations from the Navier-Stokes equations.
Furthermore, we presented a finite-volume discretization scheme and a geometric multi-
grid algorithm for solving the sensitivity equations.

The implemented multigrid method has been investigated for two different test cases,
i.e., a channel flow over a bump with variable inlet velocity and a channel with a param-
eter controlled NURBS surface. For both examples the flow sensitivities were calculated
with different spatial discretizations. Furthermore, time meassurements were realized,
which showed very good agreement with multigrid theory. We have shown that the com-
putational cost increases only linearly with the number of control volumes for decreasing
grid spacing. This allows fast and robust flow sensitivity computations for arbitrary de-
sign parameters, which enables the employment of efficient gradient-based minimization
algorithms in the context of flow control and flow optimization problems.
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[14] D. Thévenin and G. Janiga, Optimization and computational fluid dynamics.
Springer Berlin, 2008.

[15] U. Trottenberg, C. W. Oosterlee, A Schüller, Multigrid. Elsevier Academic Press,
San Diego, 2001.

[16] É. Turgeon, D. Pelletier, and J. Borggaard, A continuous sensitivity equation ap-
proach to optimal design in mixed convection. Numerical Heat Transfer, Part A:
Applications, 38: 8, 869-885, 2000

14


