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Abstract. The accurate prediction of fluid flow within rotating systems has a primary
role for the reliability and performance of gas turbine engine. The selection of a suitable
turbulence model for the study of such complex flows remains an open issue in the liter-
ature. This paper reports a numerical benchmark of the most used eddy viscosity RANS
models available within the commercial CFD solvers Fluent and CFX together with an
innovative Reynolds Stress Model closure. The predictions are compared to experimen-
tal data and previous numerical calculations available in the open literature for three test
cases. Test case 1 corresponds to a rotating cavity with a radial outflow, considered ex-
perimentally by Owen and Pincombe [19]. In that case, the main difficulty arises from
the choice of the boundary conditions at the outlet. Several types of boundary conditions
have been then considered. All models fail to predict the radial velocity distribution. Nev-
ertheless, the RSM offers the best agreement against the experimental data in terms of
the averaged tangential velocity in the core. Test case 2 corresponds to a Taylor-Couette
system with an axial Poiseuille flow studied experimentally by Escudier and Gouldson
[6]. Even if the two-equation models provide reliable data for the mean velocity field, they
strongly underestimate the turbulence intensities everywhere. The agreement between the
RSM and the measurements is rather satisfactory for the mean and turbulent fields, though
this second-order closure does not predict the asymmetry of the normal stresses. The main
discrepancies appear indeed very close to the stator. Test case 3 is a rotor-stator system
with throughflow, corresponding to the test rig of Poncet et al. [22, 23]. All the models
catch the main features of rotor-stator flows, such as the value of the entrainment coeffi-
cient or the location of the transition from the Stewartson to the Batchelor flow structures.
The RSM improves especially the predictions of the shear stress.
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INTRODUCTION

Rotating flows have been widely considered during the last decades mainly because
of their relevance in many industrial applications. We can cite among others, magnetic
storage devices, semi-conductor manufacturing processes with rotating wafers, generator
rotors or gas turbine engines. In these configurations, the flows present several complex-
ities (three-dimensionality, wall effects, imposed throughflow, transitional zones, relative
motion between elements, anisotropic turbulence, high rotation rate . . . ), which are very
challenging for numerical approaches. Up to now, the most frequently adopted turbulence
closures in such applications invoke the linear eddy-viscosity hypothesis for the mean flow
and scalar transport equations for turbulence. Among the two-equation eddy-viscosity
based turbulence model, k − ϵ model is widely used in case of very complex geometries
without excessive computational costs. On the other hand, like the other one-point first-
order turbulence models in their original form, it is not sensitized to system rotation
effects on turbulence. There are two types of effects, which are crucial to mimic in the
context of rotating machinery applications: direct effects due to the Coriolis force on the
generation of turbulent energy and indirect effects caused by the restructuration of the
flow field by the mean velocity.

One way to sensitize turbulence models to rotation effects is to modify the turbulent
length scale by adding rotation dependent terms to the dissipation rate equation. Thus,
Howard et al. [10] considered turbulent flows in rotating ducts using a modified k − ϵ
model, whose coefficients depend on the rotation rate. Hellsten [9] introduced another
correction corresponding to a curvature correction in a k − ω SST model. Following
the early work of Howard et al. [10], Cazalbou et al. [2] proposed a linear k − ϵ model,
which accounts for the inhibition of the cascade to small scales and for the shear/Coriolis
instability. It has been validated in two test cases (initially isotropic turbulence and ho-
mogeneously sheared turbulence), where the Coriolis accelerations directly influence the
fluctuating field without affecting the mean flow. A different approach is based on the
work of Gatski and Speziale [8], who derived an explicit solution to the algebraic stress
representation of a linear second-moment closure in a non inertial frame. Iaccarino et
al. [11] modified the former v2 − f model by introducing a dependence of the coefficient
cµ (contained in the definition of the eddy viscosity) on the invariants. They validated
their model in three test cases where turbulence dominates the overall effect of imposed
system rotation: a rotating channel flow, a rotating backstep, and a rotating cavity with
an impinging jet.

Within the second-moment closures, system rotation appears in the Reynolds stress
transport equations by interaction with anisotropy in the intercomponent transfer terms.
Some implicit effects of rotation need all the same to be taken into account. For example,
Coriolis accelerations modify the fluctuating field by an inhibition of the energy cascade
to small scales. Elena and Schiestel [5] proposed a RSM model in its third version, where
additional terms in the stress transport equations act only when the flow is subjected
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to strong rotation. It includes a dependence of the pressure-strain correlation to the
Reynolds and Cambon structure tensor, a spectral jamming term enhancing bidimension-
ality and the blocking effect of the spectral transfer. These modifications improved the
predictions in rotor-stator flows with a better prediction of the location of the relaminar-
ized and turbulent regions and of the turbulence levels close to the rotor.

The selection of a suitable turbulence model for the study of rotating flows remains an
open issue in the literature. Previous works showed that the flow in rotating disk systems
with throughflow can be computed with reasonable accuracy using k−ϵ models (see [26]).
Even if second-moment closures are not always tractable in complex applications due to
excessive computational cost, the purpose of the present work is to perform a benchmark
of some turbulence models in three different rotating flow arrangements with throughflow
and to propose the turbulence model offering the best trade-off between accuracy and
computational cost for each configuration.

NUMERICAL MODELING

In the next section, a brief description of some of the two-equation turbulence models
available within the commercial codes Fluent and CFX is given. Then, the RSM model
of Elena and Schiestel [5] sensitized to rotation effects is presented.

Two-Equations Turbulence Models

The standard k-ε, k-ω and k-ω SST models in their formulation kept available by
the commercial CFD 3D solvers Fluent 6.3 and CFX-12.0 have been selected for all
calculations presented here. All models were used in their original form, i.e. no tuning of
the turbulence model constants was done.

The k-ε turbulence model solves two transport equations, one for the turbulence kinetic
energy k and the other one for its dissipation rate ε. As usual for the two equations model,
the transport equation for k is derived from the exact equation, while the equation for its
dissipation rate is obtained using physical reasoning. In its original form, the k-ε model
is not sensitized to rotation and curvature effects.

The k-ω SST turbulence model solves two transport equations, one for the turbulence
kinetic energy k and one for the specific dissipation ω. The idea of the SST model is
to retain the robust and accurate formulation of the Wilcox k-ω model in the near wall
region [16], and to take advantage of the free stream independence of the k-ε model in
the outer part of the boundary layer. To achieve this, a k-ω formulation of a standard k-ε
model is derived and merged together with the previous model via a blending function
being one in the near wall region to activate the standard k-ω model and zero outside
activating the k-ε model. In its standard formulation, the k-ω SST is also not sensitized
to flow rotation and curvature.
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The Reynolds Stress Model of Elena and Schiestel [5]

The approach presented by Poncet et al. [22, 23] is based on one-point statistical mod-
eling using a low Reynolds number second-order full stress transport closure sensitized
to rotation effects by Elena and Schiestel [5]. This approach allows for a detailed de-
scription of near-wall turbulence and is free from any eddy viscosity hypothesis. Four
terms compared to the former model of Launder and Tselepidakis [14] have been added
in this version. They account for the implicit effects of rotation on turbulence and act
only when the flow is subjected to strong rotation. Φ

(R)
ij is a part of the pressure-strain

correlation term sensitized to the dimensionality tensor Cij. The modeling of its linear
effect is deduced from the spectral tensor modeling of Schiestel and Elena [24]. DR

ij is an
inhomogeneous diffusion term, which slows down the tendency to bidimensionalization for
wall bounded flows. Bij is a homogeneous source term, which rectifies the pressure-strain
correlation and which acts only in case of strong rotation. It produces spectral phase
scrambling (angular dispersion). The rotation also reduces the energy transfer from large
to small turbulent scales. It is modeled through an inverse flux Jij considered as isotropic
for high Reynolds number. It is a correction term of the dissipation εij, which increases
the turbulence levels in the core of the flow. These four terms are defined as follows:

Φ
(R)
ij = −0.6[(Dcij +

1

2
DcΩij)−

2

3
Pcδij]−

2

5
k(Vi,j + Vj,i) (1)

DR
ij = (cs

k2

ε
fRoYlmRij,l),m (2)

Bij = −αB(Rij − kδij +
1

2
Cij) (3)

Jij =
2

3
[(1− fT )δij + fT

3Rij

2k
]J (4)

The dissipation rate equation ε is the one proposed by Launder and Tselepidakis [14].
The turbulence kinetic energy equation, though it is redundant in a RSM model, is solved
numerically in order to get faster convergence. The complete model is given in [5].

The Reynolds Stress Model has been implemented in a finite-volume code using stag-
gered grids for mean velocity components with axisymmetry hypothesis in the mean and
non staggered grids for the Reynolds stress tensor. The code is steady elliptic. The
velocity-pressure coupling is solved using the SIMPLER algorithm. In order to overcome
stability problems, several stabilizing techniques are introduced in the numerical proce-
dure. Also, the stress component equations are solved using matrix block tridiagonal
solution to enhance stability using nonstaggered grids.

ROTATING CAVITY WITH AN RADIAL OUTFLOW

A cavity formed between two co-rotating coaxial disks is a common feature in rotating
machinery and, in particular, in gas turbine engine compressor and turbine rotor assem-
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blies. This configuration is also well suited for meteorological studies of the Earth’s lower
atmosphere. The flow behaviour in such cavity is strongly dependent on whether there is
a throughflow of fluid in the cavity and on the temperature between the walls. A radial
outflow is sometimes injected within the whellspace to cool the hot surfaces of the disks.
In the case of a radial outflow, the mean secondary flow in the cavity can be characterized
by a rotating inviscid core and two disk boundary layers. The flow structure may be
highly complex with the coexistence of laminar and turbulent flow regions and/or the
presence of three-dimensional vortical structures embedded in a turbulent flow regime.
For an uniform temperature distribution along the disks, Owen et al. [20] and Owen and
Rogers [?] identified four flow regions within the cavity (Fig.1): a source region close
to the inlet, two Ekman type layers along the disks, a sink region at the periphery and
an interior core separating the Ekman layers. This arrangement is very challenging for
turbulence modelings.

Geometrical configurations

Figure 1: Schematic representation of the rotating cavity with an outward radial throughflow with char-
acteristic streamline patterns, after Owen and Pincombe [19].

The cavity sketched in Figure 1 is composed of two smooth parallel disks of outer
radius Ro = 190 mm and inner radius Ri = 19 mm separated by an axial gap h = 50.73
mm. All walls rotate at the same rotation rate Ω. A volume flow rate Q of air is supplied
radially to the cavity through the entire disk gap h. The mean flow is mainly governed
by four flow control parameters: the aspect ratio of the cavity L, its radius ratio s, the
rotational Reynolds number Re based on the outer radius of the rotating disk Ro and the
volume flow rate coefficient Cw.
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L =
Ro −Ri

h
= 3.37 s =

Ri

Ro

= 0.1

Re =
ΩR2

o

ν
= 105 Cw =

Q

νRo

= 1092

where ν is the fluid kinematic viscosity. A modified Rossby number ϵr =
Q

4πr2Ωδ
is some-

times used to quantify the relative effect of the throughflow compared to the one of

rotation, with δ =
√
ν/Ω the thickness of the Ekman layer over a single infinite rotat-

ing disk. We define also the following dimensionless quantities: the dimensionless radial
r∗ = (r −Ri)/(Ro −Ri) and axial z∗ = z/h positions.

Computational details

Computations have been performed using the RSM of Elena and Schiestel [5] and two-
equation models (standard k − ϵ and k − ω models and a k − ω SST model) combined
with a low Reynolds number approach. These models are available within the commer-
cial code Fluent 6.3. For all models, a 160× 100 mesh in the (r, z) frame provides a grid
independent solution for the configuration corresponding to the experiments of Owen and
Pincombe [19]. It is also verified that the grid is sufficiently refined close the cylinders
to describe accurately the viscous sublayers. The wall coordinate z+ = ∆1zu

∗/ν (u∗ the
friction velocity at the wall and ∆1z/h = 0.0025 the size of the first mesh in the radial
direction) remains in the range [0.5 − 1.6] along both disks. The size of the first mesh
in the radial direction is ∆1r/h = 0.0054. For the RSM, about 2000 iterations (2 hours)
on the M2P2 cluster composed of 2 xeon quadcore 3 GHz are necessary to obtain the
numerical convergence of the calculations. For the two-equation models, the convergence
is reached after less than 1000 iterations (less than 1 hour) on a PC station.

The same initial and boundary conditions are imposed for all models. At the bound-
aries, all the variables are set to zero at the walls except for the tangential velocity, which
is set to Ωr on rotating walls. At the inlet, an averaged radial velocity is imposed with a
given low level of turbulence (3%). The mean tangential velocity is also fixed to the disk
speed. At the outlet, several types of conditions have been tested. As no reversed flow
has been observed in the experiments [19], the conservation of mass flow rate is imposed
at the outlet. The calculations presented here are steady state adiabatic solutions.

Results

The axial profiles of the dimensionless tangential V ∗
θ = Vθ/(Ωr) and radial Vr/Vrm

velocity components are presented in figure 2a & c respectively at r∗ = 0.556 for Re = 105

(ϵr = 0.423). Vrm is the averaged radial velocity imposed at the inlet (Vrm = Q/(2πRih)).
The predictions of the turbulence models are compared to the measurements of Owen and
Pincombe [19] and also to the standard solutions for the Ekman layers (see in [19]):
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Vr = −V̄θ exp(−z/δ) sin(z/δ) (5)

Vθ = V̄θ[1− exp(−z/δ) cos(z/δ)] (6)

with V̄θ given by Faller [7], who produced a power-series expansion of the non-linear terms
of the Navier-Stokes equations for steady and laminar flow:

V̄θ =
−Q

2πrδ
(1 + 0.3ϵr + 0.388ϵ2r . . .) (7)
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Figure 2: Axial distributions of the mean (a) tangential and (b) radial velocity profiles for Re = 105

(ϵr = 0.423) at r∗ = 0.556; (c) Radial distributions of the tangential velocity for the same parameters.
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The flow is symmetrical about the mid-cavity plane, z∗ = 0.5. Fluid entering the
cavity at r∗ = 0 is progressively entrained from the source region into the entraining
boundary layers along the rotating walls. When all of the fluid is supplied by the source
region has been entrained into the boundary layers, these boundary layers become non-
entraining (see streamline patterns in figure 1). They are referred to as non-entrained
Ekman-type layers, by analogy with Ekman layers, where the magnitude of the relative
tangential velocity of the fluid outside the layer is small in comparison with the disk speed:
about 18% of the disk speed from the experiments and 12% from the RSM (Fig.2a). The
two-equation models strongly overestimate the mean tangential velocity in the interior
core. It is shown from the axial distribution of V ∗

θ at r∗ = 0.556 (Fig.2a) but also from
the radial distributions (Fig.2c). The Ekman solution is not pertinent at r∗ = 0.556
as it provides a negative value for V ∗

θ in the core far from the measurements of Owen
and Pincombe [19]. At the higher radii, the better agreement is obtained either using
the RSM or with the Algebraic Stress Modeling (ASM) of Iacovides and Theofanopoulos
[12]. In the outler region, the Ekman solution gets pertinent again, which indicates a
relaminarization of the flow. The volume flow rate in each Ekman-type layers is Q/2 as
no fluid flows outside the boundary layers from the RSM, which is not the case using the
k−ω model (Fig.2b). There are no available measurements very close to the disks but it
is clearly shown that all models fail to predict the thickness of the Ekman layer from the
Vr profiles. The discrepancies may be explained by the appearance of three-dimensional
instabilities either in the core or in the Ekman layers depending on the flow conditions
[4]. These structures strongly affect the mean flow.

TAYLOR-COUETTE-POISEUILLE FLOWS

Test case 2 corresponds to a Taylor-Couette system subjected to an axial Poiseuille
flow, which has been studied experimentally by Escudier and Gouldson [6] then numer-
ically by Naser [17]. This kind of Taylor-Couette flows with a superimposed Poiseuille
flow is of great importance, since these flows have many applications in process engineer-
ing (dynamic membrane filtration, rheology, UV disinfection, pasteurization), geophysics
(mantle convection) and also in the turbomachinery industry for bearings, asynchronous
motor with axial ventilation or rotating heat exchangers.

Geometrical configurations

The cavity sketched in figure 3 is composed of two smooth concentric cylinders. The
inner cylinder of radius Ri is rotating at a given rotation rate Ω, while the outer cylinder
of radius Ro is stationary. This configuration is known in the litterature as the Taylor-
Couette problem. The height of the cavity is denoted h in the following. An axial volume
flow rate Q can be superimposed at the cavity inlet. The mean flow is mainly governed
by four flow control parameters: the aspect ratio of the cavity L, its radius ratio s and the
flow rate coefficient Cw already defined plus the Taylor number Ta = ΩRi∆R/ν based on
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Figure 3: Schematic representation of the Taylor-Couette-Poiseuille configuration with relevant notations.

the rotating speed of the inner cylinder ΩRi and the hydraulic diameter ∆R = 2(Ro−Ri).
The non dimensional parameter values considered here, that correspond to those related
to the experiments performed by Escudier and Gouldson [6] under isothermal conditions
are:

L = 0.0041 s = 0.506 Ta = 1922 Cw = 2839; 5914; 17742

where ν is the fluid kinematic viscosity. It corresponds to the experiments performed by
Escudier and Gouldson [6] under isothermal conditions. The values of Ta considered here
is much higher than the critical value Ta = 420 for the transition to turbulence found
experimentally by Aoki et al. [1], which ensures that the flow is highly turbulent without
Taylor vortices.

Computational details

Computations have been performed using the RSM of Elena and Schiestel [5] and two-
equation models (standard k−ϵ and k−ω models and the k−ω SST) combined with a low
Reynolds number approach. These models are the ones available within the commercial
code Fluent 6.3. For all models, a 180 × 400 mesh in the (r, z) frame has been used.
Thus, the wall coordinate r+ = ∆1ru

∗/ν remains below 0.3 along both cylinders, which
is quite below the classical value r+ = 1. The sizes of the first mesh in the radial and
axial directions are ∆1r/h = 5.65 × 10−5 and ∆1z/h = 6.38 × 10−3 respectively. About
30000 iterations (20 hours) on the M2P2 cluster composed of 2 xeon quadcore 3 GHz are
necessary using the RSM to obtain the numerical convergence of the calculations. For the
two-equation models, the convergence is reached after less than 103 iterations (less than
one hour) on PC station.

All the variables are set to zero at the walls except for the tangential velocity Vθ, which
is set to ΩRi on the inner rotating cylinder and zero on the outer stationary cylinder.
A linear profile for the mean tangential velocity component is imposed at the inlet. A
parabolic profile is then imposed for the axial velocity Vz at the cavity inlet, with a given
level of turbulence intensity (8%). At the outflow section, the pressure level is imposed,
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whereas the derivatives for all the other independent quantities are set to zero if the fluid
leaves the cavity, and fixed external values are imposed if reversed flow occurs. It is
noteworthy that reversed flows have never been observed in the present work, whatever
the values of the flow control parameters. The calculations presented here are steady state
adiabatic solutions.

Results

The predictions of the RSM and two-equation models are compared to the LDA mea-
surements of Escudier and Gouldson [6] at a given axial position z∗ = z/h = 0.1 for three
values of the flow rate coefficient: Cw = 2839, 5914 and 17742. The mean tangential veloc-
ity component is normalized using the rotational speed of the inner cylinder ΩRi, whereas
the mean axial velocity component is normalized using the mean axial velocity Vz imposed
at the inlet, defined by Vz = Q/(π(R2

o−R2
i )): V

∗
θ = Vθ/(ΩRi) and V ∗

z = Vz/Vz. To enable
direct comparisons with the measurements, the tangential v′θ and axial v′z normal stresses

are normalized by Vz: v
′∗
θ =

√
v

′2
θ /Vz and v

′∗
z =

√
v′2
z /Vz.
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Figure 4: Radial distributions of the mean tangential and axial velocity components and of the tangential
v

′∗
θ and axial v

′∗
z normal Reynolds stress tensor components for Cw = 17742.

As it can be seen from Figure 4 for Cw = 17742, the predictions of all models are in
good agreement with the experimental data for the mean axial velocity. The tangential
velocity varies inversely with the radius from the measurements, which is well predicted
by the RSM. At the same time, the k − ϵ and k − ω SST models predict a center body
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rotation. with a constant tangential velocity. The k − ω model predicts also the good
trend but it overestimates V ∗

θ outside the boundary layers with a relative error of 48%.
All models offer a good description of the boundary layer thicknesses along the cylinders.
It is noteworthy that the mean velocity profiles are far from the laminar ones highlighting
the turbulent nature of the flow. Concerning the turbulent field, turbulence intensities are
also relatively well predicted by the RSM, even if it does not reproduce the asymmetry of
the normal stress profiles observed in the experiment. The component v

′∗
θ is overestimated

by all models along the rotor, whereas they all underestimated the turbulence intensities
along the stator. The two-equation models fail completely to reproduce the good levels
for v

′∗
z in the whole gap.
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Figure 5: Radial distributions of the mean (a) tangential and (b) axial velocity components and of the
(c) tangential v

′∗
θ and (d) axial v

′∗
z normal Reynolds stress tensor components; Comparisons between the

present RSM (lines) and the LDA measurements of Escudier and Gouldson [6] (symbols) for three values
of Cw: Cw = 2839 (×, −), Cw = 5914 (△, −−) and Cw = 17742 (◦, .−). The laminar profiles (dotted
lines) and the predictions of the k − ε model of Naser [17] (dash-dotted) for Cw = 17742 are also shown.

Figure 5 shows the radial distributions of the dimensionless mean velocity components
and the corresponding normal stresses at z∗ = 0.1 for three values of the flow rate coeffi-
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cient. For the two lowest values of Cw, the tangential velocity profiles (Fig.5a) exhibit a
structure divided into three regions: two thin boundary layers developed on each cylinder
separated by a core rotating at a constant velocity. The central region rotates at 32%
(resp. 34%) of the cylinder speed for (Cw = 2839) (resp. (Cw = 5914)). The flow is here
mainly governed by the rotation. An increase of the flow rate coefficient to Cw = 17742
implies a decrease of the rotating speed of the core region. Moreover, the tangential ve-
locity is no more constant in the gap but is inversely proportional to the radius. Thus, the
mean angular momentum is almost constant in that region. There is only a weak effect
of the flow rate coefficient on the radial distributions of the axial velocity (Fig.5b). The
profiles are close to the turbulent Poiseuille flow profiles in pipes with a nearly constant
axial velocity in the gap and thin boundary layers on the cylinders. For this value of
radius ratio s = 0.506, the profiles are almost symmetric. The profiles become flatter
with decreasing Cw as already noted by Nouri and Whitelaw [18]. It is noteworthy that,
whatever the value of Cw, the mean velocity profiles are far from the laminar profiles high-
lighting the turbulent nature of the flow. For Cw = 17742, the RSM improves significantly
the results of the k − ε of Naser [17], which fails to predict the right profiles with large
discrepancies for both the axial and tangential velocity components. The axial velocity is
largely underestimated in the core and the tangential velocity is slightly overestimated.
Fully developed conditions are reached at z∗ = 0.1 using the RSM in agreement with the
observations of Escudier and Gouldson [6], whereas the predictions of the k − ε model
of Naser [17] showed a large dependence of the tangential velocity profiles on the axial
position. This last author attributed the discrepancies obtained by the k − ε model to
the fact that its model is blind to any rotation effects, and that the eddy viscosity con-
cept, on which this model is based, is unsuitable with the present flow situation. On the
contrary, the present RSM model is both sensitized to rotation effects [5] and free from
any eddy viscosity hypothesis, which may explain the better overall agreement with the
experimental data.

Figures 5c & d present the radial distributions of the tangential and axial normal
Reynolds stress tensor components for the same sets of parameters. Turbulence is mainly
concentrated in the core region and vanishes towards the walls. The tangential and axial
velocity fluctuations show a progressive decrease with increasing flow rate coefficient in
agreement with the experimental data of Escudier and Gouldson [6] and the LES results
of Chung and Sung [3]. It is attributed by Escudier and Gouldson [6] to the vortical struc-
tures observed for low Cw values induced by the centerbody rotation. For high values of
Cw, the radial penetration of the rotational influence is reduced and turbulent fluctua-
tions are suppressed as if there were no solid body rotation. The profiles of v

′∗
θ and v

′∗
z

are asymmetric for the lowest flow rate (Cw = 2839) in agreement with [3], which can be
attributed to the destabilizing effect of the centrifugal forces. All these phenomenons are
well reproduced by the RSM, which predicts also quite good the turbulent intensities in
the core of the flow. Some discrepancies are obtained in the boundary layers, especially
for the peak values very close to the walls. The variations in the radial direction of the
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turbulent levels along each cylinder are also smoother than the experimental ones, which
was also the case for the LES results of Chung and Sung [3] against the measurements of
Nouri and Whitelaw [18].

ROTOR-STATOR FLOWS WITH THROUGHFLOW

Test case 3 corresponds to a rotor-stator cavity with a superimposed axial throughflow
studied experimentally by Poncet et al. [22, 23]. These flows are encountered in many
industrial devices such as cooling-air systems in gas turbine engines for example and have
been the subject of intense researches during the last decades as they offer a relatively
simple configuration to study the influence of rotation on turbulence.

Geometrical configurations

Figure 6: Schematic representation of the rotor cavity with an axial throughflow corresponding to the
experiments of Poncet et al. [22, 23].

The cavity sketched in Figure 6 is composed of two smooth parallel disks of outer
radius Ro = 250 mm and inner radius Ri = 38 mm separated by an axial gap h. The
rotor and the hub attached to it rotate at the same rotation rate Ω, while the stator and
the shroud are stationary. A centripetal or centrifugal volume flow rate Q of water can
be supplied axially to the cavity through the two openings jh = 17 mm and js = 3 mm.
Different values of the physical parameters have been considered (see Table 1). Note that
a negative (resp. positive) value of the flow rate coefficient Cw corresponds to a centrifugal
(resp. centripetal) throughflow.

Computational details

All calculations using the two-equation models were performed with the commercial
CFD 3D solver CFX-12.0. As there is no evidence of three-dimensional structures em-
bedded in the turbulent flow, the numerical domains consist in a 5◦ sector. A mesh
independence analysis was done and a 300 × 140 mesh in the (r,z) frame proved to be
sufficient for the low Reynolds calculations while a 240× 70 mesh in the (r,z) frame was
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case aspect ratio L radius ratio s Reynolds number Re flowrate coefficient Cw

3-1 23.56 0.152 4.15× 106 0
3-2 23.56 0.152 1.04× 106 9881
3-3 70.67 0.152 1.04× 106 −5159

Table 1: Values of the flow control parameters for the three cases in the rotor-stator configuration.

selected for the high Reynolds one. The calculations presented here are steady state adi-
abatic solutions. Referring to the near wall treatment, low and high Reynolds number
approaches are used in conjunction with the SST model, while wall functions are selected
for the k − ϵ model coherently with the solver limitations.

For the RSM, a 140×80 mesh in the (r,z) frame proved to be sufficient in cases 3-2 and
3-3 in the present work to get grid-independent solutions. The wall coordinate z+ remains
below 0.2 along both disks in that cases. The sizes of the first mesh in the radial and axial
directions are ∆1r/h = 5.47 × 10−3 and ∆1z/h = 1.529 × 10−4 respectively. It has been
verified that the numerical solution is, indeed, accurate within 1.5% (maximum error for
velocity and stress components) compared to the solution obtained on a mesh using twice
the number of nodes. Nevertheless, a more refined mesh 200 × 100 is necessary for the
case 3-1 where a higher Reynolds number is computed. About 20000 iterations (10 hours
on the NEC SX-5 from the IDRIS center in Orsay) were necessary to obtain the numerical
convergence of the calculation. All the variables are set to zero at the walls except for the
tangential velocity Vθ, which is set to ΩRi on the rotor. At the inlet, a linear profile for
the mean tangential velocity and a parabolic profile for the axial velocity Vz are imposed
together with a given low turbulence level of 1%. In the outflow section, the pressure is
permanently fixed, whereas the derivatives for all the other independent quantities are
set to zero if the fluid leaves the cavity, and fixed external values are imposed if reversed
flow occurs, which may be the case under certain conditions of flow rate.

Results

We first consider the turbulent flow Re = 4.15 × 106 in a closed rotor-stator system
of aspect ratio L = 23.56 with no throughflow (case 3-1). The turbulence models are
compared to the LDA and pressure measurements of Poncet et al. [22]. For this set of
parameters, the flow clearly exhibits a Batchelor structure at mid-cavity r∗ = 0.48 (Fig.7):
two boundary layers, one on each disk, separated by a central inviscid core in solid body
rotation. The core is characterized by a zero radial velocity, which ensures that there
is no viscous shear stress and by a constant tangential one. The Bödewadt layer along
the stator is centripetal and, by conservation of mass, the Ekman layer along the rotor is
centrifugal. The tangential velocity in the core is equal to 45% of the disk speed, which
is characteristic of the turbulent regime. The thickness of the Bödewadt layer as well
as the extremum value reached by the radial velocity in that boundary layer are better
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predicted by the RSM compared to the two-equation models. An overall good agreement
is obtained between the experimental data and the model predictions for the mean field.
Regarding the turbulent field, turbulence is confined in the boundary layers, whereas the
core remains almost laminar. The levels of the two normal components of the Reynolds
stress tensor are quite similar with intensities slightly higher along the rotor side from
the numerical profiles. The RSM predicts quite well the normal stresses along the rotor.
Along the stator, all turbulence models underestimate the turbulence intensities. From
the RSM, the cross-component R∗

rθ is almost zero in the core in agreement with the LDA
data. Thus, there is no turbulent shear stress in that region. The other cross components,
not shown here, are also negligible in the core, which means that the gradients ∂Vθ/∂z
and ∂Vθ/∂r are weak. It confirms the existence of an inviscid core in solid body rotation.
It shows also that the turbulence production is almost zero in that region and so that
turbulence is only due to the diffusion phenomenon.
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Figure 7: Axial profiles of the mean radial and tangential velocity components and the corresponding
Reynolds stress tensor components at r∗ = 0.48 for L = 23.89, Re = 4.15× 106 and Cw = 0.

An axial inflow is now supplied to the cavity (Case 3-2). In that case, one interesting
phenomenon is that the central core observed in the previous case without throughflow
can rotate faster than the rotor under certain conditions of rotation and imposed flow
rate. For the set of parameters considered here (Re = 1.04 × 106, Cw = 9881), the
inviscid core is still observed but at r∗ = 0.48, it rotates at the same angular velocity
than the rotor. As shown by Poncet et al. [22], the flow preserves the Batchelor flow
structure for r∗ ≥ 0.48, whereas the core can rotate up to three times faster than the
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disk at the inner radii. The imposed inflow is here strong enough to suppress the outflow
along the rotor due to the centrifugal force. Thus, the radial velocity is negative whatever
z∗. All models underestimate the mean tangential velocity in the core, which may be
attributed to different prerotation levels imposed at the inlet between the experiment and
the calculations. Its value is fixed to half the maximum disk speed in the turbulence
models, whereas it slightly varies between 0.5 and 0.55 in the experiments depending on
Cw [21]. Turbulence is mainly confined in the Bödewadt layer along the stator. The
turbulent field is very well predicted by the RSM, while the other models underestimate
the turbulence intensities essentially in the core and along the stationary disk. The shear
stress R∗

rθ is well computed using the RSM even if the values are quite weak.
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Figure 8: Axial profiles of the mean radial and tangential velocity components and the corresponding
Reynolds stress tensor components at r∗ = 0.48 for L = 23.89, Re = 1.04× 106 and Cw = 9881.

One interesting feature in rotor-stator flows is the transition from the Batchelor flow
structure already observed in cases 3-1 and 3-2 to the one proposed by Stewartson [25].
This last author showed indeed that the tangential velocity is almost zero between the
disks apart from a thin boundary layer along the rotor. The controversy between Batche-
lor and Stewartson came to end in 1983 when Kreiss and Partner [13] studied the existence
and uniqueness of solutions for a two infinite disk configuration. They showed the exis-
tence of a class of multiple solutions depending on the initial conditions. In finite rotor-
stator disk systems, the Stewartson flow structure has been observed essentially when an
axial or radial outflow is superimposed to the main tangential flow. Figure 9 displays the
velocity profiles corresponding to the case 3-3 considered experimentally by Poncet et al.
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[23] for different radial positions. Note that no experimental data for the turbulent field
are available in this case. For the mean field, depending on the radial location, the flow
belongs either to the Batchelor flow regime or to the Stewartson one. Regarding the radial
velocity profiles, the flow is centrifugal in the whole cavity for this set of parameters. For
r∗ = 0.34, the flow is a Stewartson-type flow with only one boundary layer on the rotor.
The core disappeared (V ∗

θ ≃ 0.05 at z∗ = 0.5) and the radial velocity becomes significant
compared to the tangential velocity. The mean radial velocity profile is besides close to a
Poiseuille-like profile in pipes. For r∗ = 0.62, the flow switches continously to Batchelor
type with two separated boundary layers when one regards the tangential velocity profile.
The central core reappears as V ∗

θ has increased to 0.11 from the measurements (0.16 from
the turbulence models). When one moves closer to the periphery (r∗ = 0.91), the tangen-
tial velocity at mid-height increases up to 0.23 from the experimental profile (0.29 from
the turbulence models). The radial velocity distribution becomes asymmetric at this po-
sition. Even if the flow is outward along the stationary disk, the radial velocity is greater
along the rotor due to the combined effect of the centrifugal force due to rotation and to
the imposed outflow. All turbulence models selected here provide similar results. Even
if high Reynolds approaches do not describe accurately the boundary layers, all models
predict quite well the transition from one structure to another. Even if the values are
quite weak, the pressure distribution (not shown here), which is a sensitive quantity for
turbulence models, is also quite well predicted. In the present case, the main failure arises
from the LDA technique used by Poncet et al. [23]. When the interdisk space is small
(L = 70.67, h = 3 mm), as compared to the probe volume of the anemometer in the axial
direction (0.8 mm), the measurements failed indeed. The integration of the mean radial
velocity profile calculated by the turbulence models is in agreement with the imposed
centrifugal throughflow rate, whereas it is not the case for the experimental data. The
experimental values underestimate the radial and tangential velocities because these are
integrated values on a too big probe volume compared to the interdisk space.

CONCLUSIONS

Turbulence modelings of three turbulent rotating flow arrangements have been per-
formed using both the second-order closure of Elena & Schiestel [5] sensitized to rotation
effects and two-equation models available within commercial CFD codes. Their predic-
tions have been compared to experimental data available in the literature.

In the case of a rotating cavity with a radial outflow, all models fail to predict the right
mean velocity profiles with large discrepancies for the tangential velocity in the core and
the Ekman layer thicknesses compared to the measurements of Owen and Pincombe [19].
The best agreement for the tangential velocity distribution is obtained using the RSM.
The difficulty arises in fact from the boundary conditions at the outlet, where imposing
the mass flow rate is the only way to stabilize the calculation. It may be explained that
the appearance of three-dimensional instabilities in the Ekman layers, which strongly af-
fects the mean flow [4]. Thus, three-dimensional RANS calculations are then required.
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Figure 9: Axial profiles of the mean radial and tangential velocity components at three radial positions
for L = 70.67, Re = 1.04× 106 and Cw = −5159. Comparisons between LDA measurements (◦), the k-ε
model high Re (red line), the k-ω SST low Re (blue line), the k-ω SST high Re (green line) and the RSM
(black line).

Some comparisons have then been performed in a very elongated Taylor-Couette sys-
tem with an imposed axial Poiseuille flow. The effect of the flow rate on the hydrodynamic
field has been investigated. For all sets of parameters, the RSM has been very favorably
compared to the velocity measurements of Escudier and Gouldson [6]. In particular, it
improves significantly the predictions of the k−ϵ model of Naser [17] for the mean velocity
distributions. Even if the RSM does not predict the asymmetry of the fluctuating velocity
profiles, the computed turbulence intensities in the core region are in good agreement with
the experimental data. All models predict quite well the mean field but the two-equation
models completely fail to predict the turbulent quantities both in the boundary layers
and in the core.

Finally, some computations have been done in a rotor-stator cavity corresponding to
the experimental test rig of Poncet [21, 22, 23]. Whatever the flow configuration (with
or without an axial inward or outward throughflow), all models, including either a low-
or high- Reynolds number approach, provide very satisfactory results for both the mean
and turbulent fields. The value of the tangential velocity in the core region and the ex-
tremum values of the radial velocity and the normal stresses along both disks are well
captured even by the two-equation models. The transition to a core rotating faster than
the disk due to the inward throughflow as well as the transition between the Batchelor and
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Stewartson flow structures when an outflow is enforced, are catched by all models. For
industrial applications, the k − ω SST model seems to offer a good compromise between
accuracy and calculation cost.
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