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Abstract. In this paper, different common coupling algorithms for the partitioned sim-
ulation of strongly coupled fluid-structure interaction problems are compared. Typically,
comparisons are made regarding efficiency and stability only, but here an additional em-
phasis is placed on the compatibility or necessity of adding extensions to the standard
single field solution algorithms. The presented algorithms, which are compatible to stan-
dard field solution approaches are fixed-point iteration with Aitken-based relaxation and
an incremental quasi-Newton method. Algorithms which are typically not compatible to
standard solution approaches are Newton-Krylov methods. Here, two different approaches
are analysed, namely finite-difference and linearized model evaluation of the Krylov space.
The derivation of each algorithm is accompanied by a review regarding implementational
aspects. Two numerical examples are used for comparison with respect to efficiency and
stability.
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1 Introduction

The partitioned Dirichlet-Neumann approach is a very common solution method in
the simulation of surface coupled problems. The main reason for this is the possibility to
reuse existing single field solvers and to have great benefit from already exisiting solution
approaches. Typically, one faces the problem that for a given or a desired combination of
programs a coupling algorithm has to be chosen, which should combine high numerical
efficiency and stability with low additional coding effort.

In this paper, the focus is on the simulation of strongly coupled problems with transient
characteristic and large structural displacements. Different common coupling algorithms
for this simulation type are compared, not only w.r.t. numerical efficiency and stability,
but also w.r.t. necessary changes and adaptions to standard field solvers.

Examined coupling algorithms which allow the use of standard field solvers or black-box
solvers are 1) Aitken’s method as the most common approach, and 2) the quite recently
developed quasi-Newton method of Vierendeels and Degroote. Newton-Krylov methods
instead need additional evaluations of the Krylov space and are, therefore, typically not
usable in combination with standard field solvers. However, they may show a remarkably
higher efficiency. Finite-difference evaluation and linearized modeling of the Krylov space
are examined.

This paper is organized as follows: In section 2 and 3, the field equations and solution
approaches for the structure and the fluid field are introduced. In section 4, the cou-
pled problem is formulated in an operator notation. In section 5, the different coupling
algorithms are derived and an assessment concerning implementational aspects and the
possibility of using black-box field solvers is made. Section 6 covers numerical investiga-
tions of the coupling algorithms including two different examples with differing coupling
characteristics, examined w.r.t. numerical efficiency and stability. Based on these results
a conclusion is drawn by evaluating the different algorithms.

2 Structure Field

The structure field is supposed to show a transient characteristic with large displace-
ments. Therefore, as a solution approach, a geometricaly nonlinear formulation in com-
bination with a time integration algorithm is chosen. The field is described by the mo-
mentum equation

ρS
d2d

dt2
−∇ · (F · S) = f in ΩS, (1)

and the constitutive and kinematic equations

S = C : E , E =
1

2
(FT · F− I), (2)

which give a relation between the second Piola-Kirchhoff stress S, the Green-Lagrange
strain E, and the deformation gradient F.
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The Finite Element Method is used for discretization in space and the Generalized-α
method1 for discretization in time. This time integration method is implicit with second
order accuracy and controllable numerical dissipation of high frequencies. Therefore, a
combination of large structural time steps and high accuracy is possible. This leads to
the following modified version of the general nonlinear equation of motion:

M · d̈α + f int(dα) = f extα (3)

with M the mass matrix, f int the vector of internal forces, f ext the vector of external
forces, d̈ the accelerations and d the displacements. Because

d̈α = (1− αm)d̈n+1 + αmd̈n , dα = (1− αf )dn+1 + αfdn

f int(dα) ≈ (1− αf )f int(dn+1) + αf f
int(dn) , f extα = (1− αf )fext,n+1 + αf fext,n (4)

it can be seen that the Generalized-α method does not formulate the eqilibrium state at
time n + 1 (like e.g. Newmark-β method), but as a linear combination of the state at n
and n + 1 by using the shift-parameters αm and αf . Newmark’s Ansatz2 is used for the
discretization of the state variables in time:

dn+1 = dn + ∆tḋn +
∆t2

2
(1− 2β)d̈n + β∆t2d̈n+1,

ḋn+1 = ḋn + ∆t(1− γ)d̈n + γ∆td̈n+1. (5)

The combination of these methods leads to a system of equations which only unknown
is the structural displacement d at time n + 1. The fully discretized effective structure
equation in its residual form is then given by

RS
n+1(dn+1) = M ·

[
(1− αm) · 1

β∆t2

(
dn+1 − dn −∆tḋn −

∆t2

2
(1− 2β)d̈n

)
+ αm · d̈n

]
+ (1− αf ) · f intn+1

(
dn+1

)
+ αf · f intn (dn)− (1− αf ) · f extn+1 + αf · f extn (6)

This is a nonlinear set of equations due to the contribution of the internal forces term.
Newton’s method is used to solve this nonlinear problem iteratively. In every Newton

iteration (iteration index i) the following linearized problem is solved:

∂RS,i
n+1(din+1)

∂dn+1

∆di+1
n+1 = −RS,i

n+1(din+1), (7)

for the new displacement increment. The new displacement is given by

di+1
n+1 = din+1 + ∆di+1

n+1. (8)

Newton iterations are stopped, if a certain convergence criterion is fulfilled, e.g.∣∣∣RS,i+1
n+1 (di+1

n+1)
∣∣∣
L2
≤ εS. (9)
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3 Fluid Field

The fluid field is supposed to show a transient characteristic on a time-varying domain
with laminar flow. Therefore, the PISO-algorithm within an ALE-framework is chosen as
the solution approach.

The fluid field is described by the incompressible form of the Navier-Stokes equations
for Newtonian fluids, with the continuity and the momentum equations in their ALE
form:

∇ · u = 0

∂u

∂t
+ (u− uG)∇u−∇ · (ν∇u) +

1

ρ
∇p = 0 in ΩF (10)

with u as the absolute velocity, uG as the grid velocity and p as the pressure.
The Finite Volume Method is used for the discretization in space and the implicit

second order backward differencing method for discretization in time3,4, given by

∂u

∂t
=

3un+1 − 4un + un−1

2∆t
. (11)

This nonlinear problem is solved by the PISO method5,6 (Pressure Implicit with Split
of Operators), which is an iterative method. It contains a predictor step, based on the
linearized form of the momentum equation

∂uPn+1

∂t
+ φrel,n∇uPn+1 −∇ ·

(
ν∇uPn+1

)
= −1

ρ
∇pn, (12)

giving an approximation of the new velocity field uPn+1, and the PISO iterations (iteration
index j). Every PISO iteration consists of two steps. First, the solution of the pressure
equation, using the term φ̃, which is based on the last known velocities,

∇ ·
(

1

ajp
∇pj+1

n+1

)
= ∇ · φ̃j (13)

and gives an estimate of the new pressure field pj+1
n+1. Second, the correction of the ve-

locities w.r.t. the newly computed pressure. Typically, a predefined number of PISO
iterations is executed, until convergence of the fluid equations is assumed and the conti-
nuity and momentum equations are fulfilled, i.e.∣∣∣RF,j+1

n+1 (pj+1
n+1,u

j+1
n+1)

∣∣∣
L2
≤ εF . (14)

The variation of the fluid domain shape in time is modeled by using the relative fluxes
φrel in the momentum equation. The connection between relative, absolute and grid fluxes
is given by

φabs = φrel + φG. (15)
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The grid fluxes φG are the result of the mesh motion algorithm. This algorithm adapts the
fluid domain to the new shape with prescribed boundary positions and calculates the new
position of the fluid nodes in the interior of the fluid domain. The mesh motion problem
is defined as a Laplace problem on the fluid domain7 with the node displacements dF as
unknowns:

∇ · (γ∇dF ) = 0 in ΩF , (16)

and prescribed boundary conditions:

dF = dΓ on Γ,

dF = 0 on ΓF . (17)

γ is hereby an elementwise variable diffusion coeffienct, which influences the stiffness of
the fluid mesh against deformation. It is typically defined depending on the minimal
distance ri between element centre and coupling interface Γ. Using quadratic inverse
distance diffusicity leads to

γi(ri) =
1

r2
i

. (18)

4 Coupling Conditions and Operator Formulation of the Coupled Problem

At the common interface between fluid and structure field Γ, certain conditions have
to be fulfilled in order to establish equilibrium, which are the continuity of displacements
and velocities

dΓS = dΓF , ḋΓS = uΓF
G , (19)

and the continuity of surface tension

nΓS · τΓS = nΓF · τΓF . (20)

The solution of the coupled problem is based on a partitioned Dirichlet-Neumann ap-
proach. This means that the fluid and structure fields are solved as separate partitions
and the interaction is captured by influencing the corresponding boundary conditions.
For simplicity an operator notation is introduced12, where the application of an operator
means the solution of the corresponding field with a prescribed boundary value until full
convergence.

The fluid field is solved for unknown velocities and pressures due to a given interface
displacement dΓ, and is therefore the Dirichlet partition. The interface forces can be
computed from the fluid solution. Its operator is denoted by F and its appliance gives:

fΓ = F(dΓ). (21)

The structure field is solved for unknown displacements due to prescribed boundary forces
fΓ, and is therefore the Neumann partition. The interface displacements can be computed
from the structure solution. Its operator is denoted by S and its appliance gives:
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d̃Γ = S(fΓ) = S(F(dΓ)) = S ◦ F(dΓ). (22)

The interface displacements are the primal unknowns of the coupled problem, because
the interface forces implicitly depend on them. Convergence of the coupled problem is
reached, if the prescribed displacements dΓ and the calculated displacements d̃Γ match.
Accordingly, the residuum at the interface is given by

RΓ(dΓ, fΓ) = d̃Γ − dΓ = S ◦ F(dΓ)− dΓ. (23)

A solution of the coupled problem is found, if the residua of the two fields and at the
interface are below the corresponding tolerances:∣∣RS(d)

∣∣
L2
≤ εS ,

∣∣RF (dF ,u,p)
∣∣
L2
≤ εF ,

∣∣RΓ(dΓ, fΓ)
∣∣
L2
≤ εΓ. (24)

5 Coupling Algorithms for Strong Coupled Problems

If strong coupled problems are examined, the application of implicit coupling algo-
rithms is necessary to obtain convergence of the coupled problem. In partitioned schemes,
this implies an iterative solution of the problem (iteration index k), where in every it-
eration the interface displacements are prescribed and the fluid and structure field are
solved to full convergence. The basic form of an implicit coupling algorithm is shown in
algorithm 1.

It can be seen that in every coupling iteration the full solution of fluid and structure
fields is necessary. This is the reason for the extensive numerical effort of implicit coupled
computations. The most important part of the algorithm is the determination of the
new interface displacement increment ∆dΓ,k

n+1 in each iteration. For this task, the cou-
pling algorithms introduced in the next sections use different approaches and techniques.
Typically, the most important aspects in the comparison and evaluation of coupling al-
gorithms are due to effectivity (necessary number of coupling iterations) and stability
(convergence behavior and time step regularization). But an important reason for choos-
ing a partitioned approach is quite often the possibility to reuse existing field solvers and
their solution techniques. So an additional important factor is the compatibility of the
coupling algorithm with standard single field solution approaches. Only if the algorithm
shows superior efficiency and stability, this drawback maybe worthwhile.

In the next subsections, three common coupling algorithms suitable for strong coupled
problems will be introduced and examined, also w.r.t. the possibility of reusing standard
single field solution approaches. The comparison w.r.t. efficiency and stability is done in
section 6.

5.1 Fixed-Point Iteration with Aitken Adaptive Underrelaxation

The basic form of any fixed-point method is given by

xk+1 = Φ(xk), k = 1, ..., n, (25)
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Algorithm 1 Basic Form of an Implicit Dirichlet-Neumann Coupling Algorithm

1: for t = 0 to t = ttot do
2: k=1
3: while (!converged) do
4: If(k==1) predict dΓ,k

n+1

5: d̃Γ,k
n+1 = S ◦ F(dΓ,k

n+1)

6: RΓ,k
n+1 = d̃Γ,k

n+1 − dΓ,k
n+1

7: if
(∣∣∣RΓ,k

n+1

∣∣∣
L2
< εΓ

)
then

8: dΓ
n+1 = dΓ,k

n+1

9: converged, go to next time step
10: else
11: ∆dΓ,k

n+1 = f(RΓ,k
n+1)

12: dΓ,k+1
n+1 = dΓ,k

n+1 + ∆dΓ,k
n+1

13: end if
14: k ← k + 1
15: end while
16: n← n+ 1
17: end for

with the fixed-point operator Φ, giving a new solution of the problem based on the last
solution. For surface coupled problems, at time n+ 1 the iteration directive reads

Φ
(
dΓ
n+1

)
= dΓ,k

n+1 + ∆dΓ,k
n+1. (26)

Using a relaxtion technique for the update of the interface displacement leads to

dΓ,k+1
n+1 = dΓ,k

n+1 + ∆dΓ,k
n+1

= dΓ,k
n+1 + ωkRΓ,k

n+1

= dΓ,k
n+1 + ωk(d̃Γ,k

n+1 − dΓ,k
n+1)

= (1− ωk)dΓ,k
n+1 + ωkd̃Γ,k

n+1 (27)

with ωk as the relaxation factor in iteration k.
There exist different possibilities for the determination of ω, but the most efficient is

Aitken’s ∆2-method8,9,10. As a basis, the Aitken factor has to be determined by

µkn+1 = µk−1
n+1 +

(
µk−1
n+1 − 1

) (∆dΓ,k−1
n+1 −∆dΓ,k

n+1

)T
·∆dΓ,k

n+1(
∆dΓ,k−1

n+1 −∆dΓ,k
n+1

)2 , (28)
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with

∆dΓ,k−1
n+1 = d̃Γ,k−1

n+1 − dΓ,k−1
n+1 ,

∆dΓ,k
n+1 = d̃Γ,k

n+1 − dΓ,k
n+1, (29)

and the corresponding relaxation parameter is then given by

ωk = 1− µkn+1. (30)

Aitken’s method is extremly easy to implement, because it just needs the evaluation of
some vector products in each coupling step. Reuse of standard field solution approaches
is guarenteed, because no additional information from the fields is needed and therefore
black-box field solvers can be used. Due to these two reasons, Aitken’s approach is the
most commonly used method in the solution of strong coupled problems.

5.2 Quasi-Newton Method

The recently developed coupling algorithm of Vierendeels and Degroote11,12,13 is a quasi-
Newton method. Based on the change of the interface residual over coupling iterations, a
minimization problem is solved and a new interface displacement increment is generated.

A starting procedure is needed to determine the first increments of residuum and dis-
placement. For this, a prediction step followed by a constant relaxation step is performed.
Then the quasi-Newton iterations are entered. The basic idea is that the desired interface
residual in the next iteration should be zero: RΓ,k+1 = 0. The desired change of the resid-
ual is therefore: ∆Rk = 0 −RΓ,k. This change is approximated by a linear combination
of the known residual increments:

∆RΓ,k
n+1 = 0−RΓ,k

n+1 ≈
k−1∑
i=1

αki ∆RΓ,i
n+1. (31)

This system is in general overdetermined and solved approximately as a minimization
problem for the unknown linear coefficients αki , e.g. with the least squares method:

αk = arg min

∣∣∣∣∣
∣∣∣∣∣RΓ,k

n+1 +
k−1∑
i=1

αki ∆RΓ,i
n+1

∣∣∣∣∣
∣∣∣∣∣
2

. (32)

The coefficients are now applied to the corresponding relaxed interface displacements

∆d̃Γ,k
n+1 =

k−1∑
i=1

αki ∆d̃Γ,i
n+1, (33)

with ∆d̃Γ,i
n+1 = d̃Γ,i− d̃Γ,i−1. The correlation between dΓ and d̃Γ is given by RΓ = d̃Γ−dΓ,

and therefore: dΓ = d̃Γ −RΓ. For the corresponding incremental state, this leads to

∆dΓ,k
n+1 = ∆d̃Γ,k

n+1 −∆RΓ,k
n+1 (34)
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for the determination of the new interface displacement increment.
This method allows the reuse of information from preceding coupling iterations to

gain further speed-up of the coupling algorithm. The only thing to do is to add a series
of preceding incremental residuum vectors to the minimization problem (32). This is
possible, because for transient simulations it is expected that the relation between residual
reduction and displacement increment is still valid to a certain extent in subsequent steps.
An open question is how many preceding vectors have to be added to the minimization
problem. This will be examined in section 6.

The quasi-Newton method presented here is more complicated to implement than
Aitken’s method. As the core requirement, the minimization problem has to be solved.
The storage demand is also greater due to a major number of interface vectors which
have to be stored. As with Aitken’s method, standard black-box field solvers can be used
because no additional information is needed from the fields.

5.3 Newton-Krylov Methods

Another popular group of methods for the solution of strongly coupled problems are
Newton-Krylov methods. Newton methods are a standard solution approach for nonlinear
problems and commonly used e.g. in structural and fluid mechanics. Using Newton-
methods for the solution of coupled problems is therefore a natural choice, but the specific
characteristics of coupled problems do not allow the use of standard procedures.

Newton methods are iterative methods, which solve in each iteration a linearized prob-
lem. For coupled problems, this reads:

∂RΓ,k
n+1

∂dΓ
∆dΓ,k

n+1 = −RΓ,k
n+1 (35)

with RΓ as the interface residual and ∂RΓ

∂dΓ as the interface Jacobian, which is the lineariza-
tion of the nonlinear coupled problem at the current position dΓ. For the general case of
nonlinear field solvers it is not possible to evaluate the Jacobian directly. But there exists
a variety of approaches which are based on an approximation of the Jacobian matrix. A
common way in coupled problems is to use a Krylov solver, i.e. GMRES, for the solution
of eqn. (35). Krylov solvers find solutions for linear systems of equations by evaluating
the Krylov space of the problem and minimizing the equation residual over this space14.
The advantage of Krylov methods within the context of coupled problems is, that the
Jacobian matrix is not needed explicitly, but only the evaluation of the matrix times the
Krylov vectors.

A coupling algorithm based on Newton-Krylov methods is shown in algorithm 2. It
can be seen, that in every coupling iteration the current tangent problem is solved by
additional iterations to evaluate the Krylov space (iteration index m). The GMRES
algorithm is used to calculate the new Krylov vector vm+1. As the input the Krylov space
evaluation corresponding to vm is needed, which means that the term
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∂RΓ,k
n+1

∂dΓ
vm (36)

has to be evaluated in every GMRES iteration. Because the Jacobian is not known, only
an approximation is possible. The approximation of this matrix-vector product is the key
ingredient of all Newton-Krylov coupling algorithms, as the relation between quality of
the approximation and numerical effort has the decisive influence to the efficiency of the
whole method.

After the tangent problem is solved by GMRES until convergence, the new interface
displacement increment is given as a linear combination of the Krylov vectors

∆dΓ,k+1
n+1 =

m∑
n=1

vnαn, (37)

with the linear coefficients αn as the solution of the corresponding minimization problem

αn = arg min

∣∣∣∣∣
∣∣∣∣∣RΓ,k

n+1 −
m∑
n=1

αn

(
RΓ,k
n+1

)′
vn

∣∣∣∣∣
∣∣∣∣∣
2

. (38)

In the subsequent section, two different methods of Krylov space evaluation are in-
troduced. The evaluation of the coupled problem over the Krylov space is performed by
specific Krylov field operators marked by a star, so F? for the specific fluid field and S?
for the specific structure field.

5.3.1 Krylov-Space Evaluation by Finite Differences

A very simple way to evaluate the Krylov space is to use global Finite Differences15,16,17,18.
Using e.g. a first order approximation the matrix-vector product is given by

∂RΓ,k
n+1(dΓ,k

n+1)

∂dΓ
vm ≈

RΓ,k
n+1(dΓ,k

n+1 + αvm)−RΓ,k
n+1(dΓ,k

n+1)

α
. (39)

The interface residual RΓ,k
n+1 is already known and the residual at RΓ,k

n+1(dΓ,k
n+1 + αvm) can

be evaluated by using the standard field operators F and S. The specific field operators
F? and S? are therefore identical with the standard field operators, which have to be
evaluated at the position dΓ,k

n+1 + αvm, leading to

RΓ,k
n+1(dΓ,k

n+1 + αvm) = S ◦ F(dΓ,k
n+1 + αvm)− (dΓ,k

n+1 + αvm). (40)

By definition, the Krylov vectors are of length one. Therefore, the scalar α is used
to scale the Krylov vectors and evaluate the response of the coupled problem within a
meaningful radius. The choice of α has a major influence on the evaluation quality.

A Finite Difference based evaluation of the Krylov space has the advantage, that the
standard problem is evaluated. Therefore, standard field solvers can be used and even
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Algorithm 2 Newton-Krylov Coupling Algorithm

1: for t = 0 to t = ttot do
2: k=1
3: while (!coupling convergence) do
4: If(k==1) predict dΓ,k

n+1

5: d̃Γ,k
n+1 = S ◦ F(dΓ,k

n+1)

6: RΓ,k
n+1 = d̃Γ,k

n+1 − dΓ,k
n+1

7: if
(∣∣∣RΓ,k

n+1

∣∣∣
L2
< εΓ

)
then

8: dΓ
n+1 = dΓ,k

n+1

9: coupling converged, go to next time step
10: else
11: Evaluate Krylov space:

12: v1 = RΓ,k
n+1/

∣∣∣∣∣∣RΓ,k
n+1

∣∣∣∣∣∣
2

13: m = 1
14: while (!GMRES convergence) do
15: (RΓ,k

n+1)′vm = f(S? ◦ F?(vm))

16: vm+1 = GMRES → f((RΓ,k
n+1)′vm)

17: if

(∣∣∣∣RΓ,k
n+1 −

∑m
n=1 αn

(
RΓ,k
n+1

)′
vn

∣∣∣∣
L2

≤ εK
)

then

18: ∆dΓ,k+1
n+1 =

∑m
n=1 vnαn

19: dΓ,k+1
n+1 = dΓ,k

n+1 + ∆dΓ,k
n+1

20: GMRES converged, go to next coupling step
21: else
22: m← m+ 1
23: end if
24: end while
25: end if
26: k ← k + 1
27: end while
28: n← n+ 1
29: end for
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the usage of black-box solvers is possible. Additionally, for the optimal choice of α the
evaluation quality is very high, because the complete problem is evaluated. Nevertheless,
this method has three major disadvantages:

• The influence of α on the quality of the evaluation is great, but guidelines for its
determination are rather unknown. For large values of α, the field solvers will not
converge, and for very small values of α, numerical rounding errors will have great
influence.

• In every coupling iteration, additional multiple solutions of the whole problem are
necessary. This leads to high additional numerical effort.

• Due to the orthogonality of the Krylov vectors, the additional field solutions can be
more expensive than the standard solutions, because there’s no continuous conver-
gence against the final result.

5.3.2 Krylov-Space Evaluation by Linearized Model

Another common method of Krylov space evaluation is to use a simplified model, in
which the physics of the problem is maintained, but the nonlinearities of both fields and
the fluid domain adaption are neglected19,21. This is called a linearized model and is based
on the assumption, that a linearization at the current state gives enough information for
a qualitative evaluation.

The fluid domain is frozen arround the current state ΩF,k
n+1, and an Eulerian fluid model

is used. The Krylov vector is used as a bondary condition for fluxes and velocities by
transformation into a boundary velocity. All other boundary conditions are identical to
the full model. The velocity predictor step is skipped and only one iteration of the PISO
loop is executed. The specific fluid field operation f?m+1 = F?(vm) is given by:

∇ ·
(

1

ajp
∇p?,m+1

n+1

)
= ∇ · φ̃?,k in ΩF,k

n+1,

p?,m+1
n+1 = pkn+1 on ΓF,kn+1,

u?,m+1
n+1 = ukn+1 on ΓF,kn+1,

u?,m+1
n+1 =

vm
∆t

on ΓFSI,kn+1 . (41)

On the structure field, the current tangential effective stiffness matrix is evaluated.
The specific structure field operation ṽm+1 = S?(f?m+1) is therefore given as:

∂Rk
S,n+1(dkn+1)

∂dn+1

ṽm+1 = f?m+1 in ΩS,k
n+1. (42)

The matrix-vector product can then be evaluated by:

12
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∂RΓ,k
n+1(dΓ,k

n+1)

∂dΓ
vm = vm − ṽm+1 (43)

This approach has the advantage, that all relevant physical flow quantities can be captured
and the numerical effort for the evaluation is low. Only two linear systems have to be
solved in each Krylov iteration. There are mainly three disadvantages to state:

1. Neglecting the mesh motion leads to wrong matrix coefficients in the equation sys-
tems and the interface is no longer a wall boundary. The effect of these errors is
strongly problem dependend.

2. The evaluation quality due to linearization is good, only if the nonlinear effects
are comparably small. Therefore, time step size and coupling degree have strong
influence.

3. Because simplified models have to be setup in the field solvers, the usage of black-box
field solvers is no longer possible.

6 Numerical Investigation

In this section the above-mentioned coupling algorithms are compared w.r.t. numerical
efficiency and stability. As an example, the cases FSI2 and FSI3 of the model problem
introduced by Turek and Hron22 are chosen, because of having the following properties: 1)
These cases show transient behavior with large displacements and are strongly coupled.
2) Exact definitions of geometry and physical quantities are given and the single field
models are simple. 3) There exist results from different groups23,24, so that the reference
values are expected to be verified.

The geometry of both cases is the same and only the physical quantities are changed.
A sketch of the computational domain is given in fig. 1. The rectangular fluid domain has
a parabolic inlet on the left, an outlet on the right and walls on top and bottom. A rigid
cylinder is placed slightly asymmetric within the domain and an elastic beam is attached
to the back of the cylinder. The length is 2.5 [m], height is 0.41 [m], the cylinder center is
at (0.2, 0.2 [m]) with a radius of 0.05 [m]. The elastic beam has the length of 0.6 [m] and
height of 0.02 [m]. The physical quantities of the two cases are summarized in table 1. A
more detailed descripion is given e.g. in Turek(2006).

ρS

ρF ρS
[
kg
m3

]
νS [−] E

[
kg
m3

]
ρF
[
kg
m3

]
νF [−] Umax

[
m
s

]
Re [−]

FSI2 10.0 10000 0.4 1.4e06 1000 1e−03 1.5 100
FSI3 1.0 1000 0.4 5.6e06 1000 1e−03 3 200

Table 1: Physical parameters for FSI2 and FSI3

The laminar fluid field is modeled using an implicit 2nd order Finite Volume Method
on a structured grid. The structure field is modeled as a cantilever beam using an implicit
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Figure 1: Computational domain

2nd order Finite Element Method with shell elements. Every coupling algorithm starts
with a predictor of the interface displacements. Here, a 1st order Newmark-type predictor
is used in all methods, given by dΓ,P

n+1 = dΓ
n + ∆tḋΓ

n. The usage of this predictor leads to
an inital relative residual in the order of 10−1 in the first coupling iteration. The coupling
algorithms compared are Aitken’s method (FPA), Quasi-Newton method without (QN)
and with reuse (QN-R) of information, Newton-Krylov method with finite differences
(NKFD) and linearized problem modeling (NKLP), also without and with reuse of Krylov
vectors (NKFD-R and NKLP-R). For reuse of information 10 and 20 history levels are
taken into account. For the Krylov methods the numbers in brackets denote the average
number of additional Krylov iterations per time step. In NKFD the scaling factor α is
set to α = 1.0e−4. This is the result of a comparative study giving best performance.
The coupling iterations are converged, if a relative convergence criteria of εΓ ≤ 10−5 is
fulfilled, which is a comparably demanding value.

6.1 Problem FSI2

The resulting transient displacement of point A in x- and y-direction is shown in fig.
2. It can be seen, that after an inital phase, the beam shows a harmonic oscillation with
constant frequency and amplitude, which is the result of the interaction between Karmann
vortices and beam displacement.

In the following, the different coupling algorithms are used to compute the coupled
system’s behavior. The first 500 timesteps are computed. To compare w.r.t. efficiency, the
average number of necessary coupling iterations and the relative computing time is given.
To compare w.r.t. stability, two increasing time step sizes are examined, ∆t = 5.0e−4 [s],
what corresponds to a maximum Courant number of 0.8, and ∆t = 10.0e−4 [s], what
corresponds to a maximum Courant number of 1.6, in the undeformed fluid configuration.
The results are summarized in table 2.

As the standard approach, Aitken’s method (FPA) needs 8.984 iterations with ∆t =
5.0e−4 [s] and 9.348 iterations with ∆t = 10.0e−4 [s], so the influence of the larger time
step is quite small. The Quasi-Newton method in its basic version (QN) only needs
5.356 and 5.964 iterations, so a reduction of −40.4% and −36.2% is obtained. Again,
the influence of the larger time step is quite small. Because the convergence criteria is
given by εΓ ≤ 10−5 the basic QN method yields approximately linear convergence. Reuse
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Figure 2: FSI2 - Displacement of Point A in x- and y-direction

∆t = 0.0005 ∆t = 0.001
Iterations CPU time Iterations CPU time

FPA 8.984 1.00 9.348 1.00
QN 5.356 0.62 5.964 0.67
QN-R(10) 3.562 0.40 4.926 0.53
QN-R(20) 3.470 0.39 4.904 0.52
NKFD 5.126 (11.146) 2.23 5.262 (14.668) 2.58
NKFD-R(10) 5.006 (6.404) 1.55 5.248 (7.490) 1.67
NKFD-R(20) 5.012 (5.116) 1.34 5.248 (6.218) 1.52
NKLP 5.612 (12.320) 0.94 5.020 (12.762) 0.84
NKLP-R(10) 5.604 (6.182) 0.76 5.020 (6.85) 0.68
NKLP-R(20) 5.604 (5.450) 0.71 5.022 (5.58) 0.65

Table 2: Comparison for FSI2

of history information (QN-R) gives an additional large increase in performance with
low additional cost. Reusing 20 history levels (QN-R(20)) leads to 3.47 iterations with
∆t = 5.0e−4 [s] and a reduction of −35.2% and 4.90 iterations with ∆t = 10.0e−4 [s] and
a reduction of −17.8% compared to QN. Here, a larger influence of the time step size can
be observed. This is as expected, because the information quality of preceding time steps
decreases for larger time steps. Newton-Krylov with Finite Differences (NKFD) need
a little bit more than 5 iterations. NKFD is therefore slightly better then QN in terms
of total iterations and gives approximately linear convergence rates. Reuse of Krylov
information (NKFD-R) leads to a significant reduction of necessary GMRES iterations
(−54.1% for ∆t = 5.0e−4 [s] and −57.6% for ∆t = 10.0e−4 [s]). The number of coupling
iterations remains constant, because the solution tolerance of eqn. (40) is not influenced
by the reuse. It is important to note, that every Krylov iteration has approximately the
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same cost as one coupling iteration. So to compare NKFD with other schemes, the CPU
time is a better evaluation criteria. Here, it can be seen that NKFD needs 2.23 and 2.58
times more CPU time than FPA, and even reuse of 20 levels makes NKFD less efficient
than FPA. Using the linearized problem (NKLP) reduces the cost for Krylov evaluation
significantly. The overall convergence rate is slightly decreased and it is again observed,
that reuse of Krylov information (NKLP-R) reduces the number of Krylov iterations
significantly (−55.8% for ∆t = 5.0e−4 [s] and −56.3% for ∆t = 10.0e−4 [s]). Again, only a
linear convergence rate of the overall problem can be reached and there still exists the cost
of additional Krylov evaluation. It can be seen from the CPU time, that NKLP is much
faster than NKFD and performs better than FPA. In this case, the linearization approach
is able to represent decisive aspects of the coupled problem. The time step influence in
both Newton Krylov schemes is less than in QN.

6.2 Problem FSI3

The resulting transient displacement of point A in x- and y-direction is shown in fig.
3. It can be seen, that after an inital phase the beam shows a harmonic oscillation with
constant frequency and amplitude, which is the result of the interaction between Karmann
vortices and beam deformation.

Figure 3: FSI3 - Displacement of Point A in x- and y-direction

In the following, the different coupling algorithms are used to compute the coupled
system’s behavior. The first 300 timesteps are computed. To compare w.r.t. efficiency, the
average number of necessary coupling iterations and the relative computing time is given.
To compare w.r.t. stability, two increasing time step sizes are examined, ∆t = 2.5e−4 [s],
what corresponds to a maximum Courant number of 0.8, and ∆t = 10.0e−4 [s], what
corresponds to a maximum Courant number of 3.2, in the undeformed fluid configuration.
The results are summarized in table 3.
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∆t = 0.00025 ∆t = 0.001
Iterations CPU time Iterations CPU time

FPA 20.083 1.00 32.177 1.00
QN 10.253 0.54 12.983 0.41
QN-R(10) 6.567 0.34 7.690 0.28
QN-R(20) 6.460 0.33 8.257 0.26
NKFD 5.253 (33.76) 2.50 9.493 (67.64) 2.39
NKFD-R(10) 5.296 (24.62) 1.91 9.477 (45.333) 1.72
NKFD-R(20) 6.097 (18.990) 1.59 10.650 (36.473) 1.51
NKLP 11.927 (65.633) 1.33 12.917 (88.533) 0.84
NKLP-R(10) 11.953 (33.200) 0.96 13.023 (47.375) 0.60
NKLP-R(20) 11.857 (24.057) 0.88 13.010 (34.220) 0.54

Table 3: Comparison for FSI3

As the standard approach, Aitken’s method (FPA) needs 20.083 iterations with ∆t =
2.5e−4 [s] and 32.177 iterations with ∆t = 10.0e−4 [s], so in this case a large time step
influence is observed (+60.2% iterations). This is due o the greater nonlinearity of this
case. The Quasi-Newton method in its basic version (QN) only needs 10.253 and 12.983
iterations, so a reduction by 48.9% and 59.7% is obtained. The time step influence in
QN method is smaller than in FPA (+26.6% iterations). Reuse of history information
(QN-R) gives an additional large increase in performance, with a low additional cost.
Reusing 20 history levels (QN-R(20)) leads to 6.460 iterations with ∆t = 2.5e−4 [s] and
a reduction by 37.0% and 8.257 iterations with ∆t = 10.0e−4 [s] and a reduction by
36.4% compared to QN. Newton-Krylov with Finite Differences (NKFD) needs 5.253
iterations for ∆t = 2.5e−4 [s]. So in terms of coupling iterations only it needs less iterations
than QN and FPA methods and gives approximately linear convergence rates. Reuse of
Krylov information (NKFD-R) leads to a significant reduction of necessary GMRES
iterations (−40.8% for ∆t = 2.5e−4 [s] and −46.1% for ∆t = 10.0e−4 [s]). The huge
additional cost of GMRES iterations can be seen from the CPU time. All NKFD methods
need clearly more time then FPA and QN. It also has to be noted that the time step
influence on NKFD is very large (+80.7% for ∆t = 2.5e−4 [s] and +76.7% for ∆t =
10.0e−4 [s]) compared to QN. Using the linearized problem (NKLP) reduces the cost for
one Krylov evaluation significantly. But due to the higher nonlinearity of this case, the
evaluation quality of the linearized problem is not good, leading to a large increase in
coupling and Krylov iterations (∆t = 2.5e−4 [s]: +127.1% coupling and +94.4% Krylov
iterations for NKLP and +94.5% coupling and +20.3% Krylov iterations for NKLP-
R(20), ∆t = 10.0e−4 [s]: +36.1% coupling and +30.9% Krylov iterations for NKLP and
+94.5% coupling and +20.3% Krylov iterations for NKLP-R(20)). Again, reuse of Krylov
information reduces the number of Krylov iterations significantly (down by −63.3%). In
this case, the linearization approach is not able to represent the decisive aspects of the
coupled problem properly. To summarize, due to greater nonlinearity the total number
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of coupling iterations is higher than in the case of FSI2. Only the NKFD method gives
approximately linear convergence rates, but has the costly additional Krylov evaluation
and is therefore not competitive. The linearized evaluation is not suitable in this case.
Again, the Quasi-Newton method with reuse gives the best performance of all examined
schemes.

6.3 Conclusion

The following conclusions can be drawn from these two examples:

• It is possible to reach a significant increase in performance compared to the standard
Aitken method.

• The examined Quasi-Newton method is the most efficient one and allows the reuse
of black-box field solvers.

• The examined Newton-Krylov methods need specific single field solution approaches,
but do not yield to better performance than Quasi-Newton.

• In general, the reuse of history information leads to a large performance increase.

• Newton-Krylov and Quasi-Newton can give linear and QNR even superlinear con-
vergence rates.

• The Krylov evaluation scheme is the decisive factor for the effectivity of Newton-
Krylov schemes. This aspect is typically not mentioned in literature.

• Although large time steps are examined, none of the methods show stability prob-
lems.

7 Summary

In this paper different common algorithms for the partitioned solution of strongly
coupled fluid-structure interaction problems are examined. The algorithms are compared
w.r.t. efficiency and stability. It is shown, that the examined Quasi-Newton method is the
most efficient and superlinear convergence can be reached. It also allows the use of black-
box field solvers. The examined Newton-Krylov methods are less efficient. Additionally,
they require the costly adaption of single field solvers, what is against the basic idea of
partitioned schemes. Therefore, the Quasi-Newton method is prefered to other methods,
because it allows the combination of efficiency and simplicity.
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