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Abstract. In this work, we study the anisotropic Navier-Stokes equations in a shallow
domain. We use asymptotic analysis (as in our previous works1,2) to obtain a new shallow
water model with viscosity that allows us to give not only the depth-averaged horizontal
velocity, but the three components of velocity for all z. There are two major novelties
in the new shallow water model that we have obtained: the new diffusion terms and the
dependence on depth of the velocities.
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1 INTRODUCTION

In this work we wish to obtain a shallow water model from Navier-Stokes equations but
without averaging in depth. With this aim we introduce a small adimensional parameter
ε related to the depth of the domain where we shall work, tipically a river, a lake or an
ocean’s region. Let us consider the domain

Ωε =
{

(xε, yε, zε) ∈ R3/ (xε, yε) ∈ D ⊂ R2, zε ∈ (Hε(xε, yε), sε(tε, xε, yε))
}

(1)

where (xε, yε) are the horizontal coordinates, zε is the vertical coordinate, D is the
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Figure 1: Domain Ωε

projection on the XY plane of Ωε, zε = Hε(xε, yε) is the equation of the bottom of
the domain (supposed known), and zε = sε(tε, xε, yε) is the equation of the free surface
(unknown). We can also define hε(tε, xε, yε) = sε(tε, xε, yε)−Hε(xε, yε) (water depth).

To make sure that Ωε is a shallow domain (remember that we are interested in a region
where the depth is small when compared with the other dimensions), let us suppose that
ε is small and

Hε(xε, yε) = εH(x, y), sε(tε, xε, yε) = εs(t, x, y), hε(tε, xε, yε) = εh(t, x, y) (2)

(where x = xε, y = yε, t = tε are independent of ε). We are assuming that Hε, hε and
sε are of order ε, so they are small when ε is small. We can then interpret ε as a small
parameter of the same order as the quotient of the characteristic depth and the diameter
of the domain.

Let us assume that the flow obeys the three-dimensional anisotropic Navier-Stokes
equations, that is
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∂~uε

∂tε
+ (~uε · ∇ε) ~uε = − 1

ρ0

∇εpε + div Σε + ~Fε
e (3)

div ~uε = 0 (4)

where ~uε = ~uε(tε, xε, yε, zε) is the velocity vector, pε = pε(tε, xε, yε, zε) is the pressure,

∇ε =

(
∂

∂xε
,
∂

∂yε
,
∂

∂zε

)
, ρ0 denotes the density of the fluid,

Σε
ij = νεj

∂uεi
∂xεj

+ νεi
∂uεj
∂xεi

(5)

with (νε1, ν
ε
2, ν

ε
3) denoting the viscosity vector, and ~Fε

e the volume force per unit mass. Let
us suppose that

~Fε
e = −g~k − 2~φ× ~uε (6)

where g is the gravity acceleration (assumed constant) and −2~φ×~uε is the Coriolis accel-

eration (where the angular velocity of rotation of the Earth is ~φ = φ
(

sinϕε~k + cosϕε~
)

with φ = 7.29× 10−5 rad/s; ~ı, ~ and ~k denote the unit vectors pointing East, North and
vertically upward (respectively); ϕε is the North latitude, that we consider either constant
or depending on yε).

We must also impose the boundary conditions. We shall assume that the pressure pε

coincides with the atmospheric pressure at the surface

pε = pεs at zε = sε(tε, xε, yε) (7)

(where the atmospheric pressure at the surface, pεs = pεs(t
ε, xε, yε), is supposed to be

known and independent of ε, that is, pεs(t
ε, xε, yε) = ps(t, x, y)). The fluid satisfies the

non-penetration condition at the bottom so

~uε · ~nε = 0 at zε = Hε(xε, yε) (8)

where ~nε denotes the outer unit normal to the boundary of the domain.
Rather than assuming that the velocity vanishes at the bottom, we are going to take

friction into account, which translates into a condition on the stresses at the bottom:

[Tε~nε]τ = −~f εR at zε = Hε (9)

where [·]τ denotes the projection onto the plane tangent to the bottom at each point and,

typically, the friction force is of the form ~f εR = ρ0C
ε
R|~uε|~uε (Cε

R is small).

Similarly we give a condition on the stresses at the surface, so if ~f εW is the force of the
wind:

[Tε~nε]τ =
[
~f εW

]
τ

at zε = sε (10)
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We also suppose that the incoming and outcoming flows are known at each instant.
Other kind of boundary conditions may be easily considered.

We shall need to introduce the vorticity

~γε = ∇ε × ~uε (11)

that verifies the following equation (see, for example, Temam and Miranville3):

∂~γε

∂tε
+ (~uε · ∇ε)~γε − (~γε · ∇ε) ~uε = ∇ε ×

(
div Σε + ~Fε

e

)
(12)

Finally, we must include a free surface condition at zε = sε, that we have replaced with
the following equivalent condition derived from the law of conservation of mass:

∂hε

∂tε
+

∂

∂xε

∫ sε

Hε

uε1 dz
ε +

∂

∂yε

∫ sε

Hε

uε2 dz
ε = 0 (13)

Initial conditions must be imposed too.

2 ASYMPTOTIC ANALYSIS

We are going to study now problem (3)–(13) using asymptotic analysis (see our previous
works1,2 for a similar example). Let us consider Ω = D×(0, 1) as reference domain, related
to Ωε through the following change of variable:

tε = t, xε = x, yε = y, zε = ε[H(x, y) + zh(t, x, y)] (14)

Using this change of variable, we can associate to each function F ε defined on [0, T ]×Ω
ε
,

another function F (ε) defined on [0, T ]×Ω in this way: F (ε)(t, x, y, z) = F ε(tε, xε, yε, zε).
Under this change of variable, problem (3)–(13) becomes an equivalent system of equa-

tions posed in the reference domain. For example, equation (4) now reads:

∂u1(ε)

∂x
−

∂H
∂x

+ z ∂h
∂x

h

∂u1(ε)

∂z
+
∂u2(ε)

∂y
−

∂H
∂y

+ z ∂h
∂y

h

∂u2(ε)

∂z
+

1

εh

∂u3(ε)

∂z
= 0 (15)

In order to apply the formal asymptotic analysis method, let us suppose that each
function in the equivalent system posed in the reference domain (~u(ε), p(ε), . . . ) allows
a representation in powers of ε. More precisely, if F ε is an unknown of system (3)–(13)
we assume that, once in the reference domain, can be written as follows:

F (ε) = F 0 + εF 1 + ε2F 2 + · · · (16)

The next step is to substitute the expansion in powers of ε of each unknown into the
system of equations in the reference domain and then, to group the terms multiplied by
the same power of ε. This allows us to identify the first terms of the expansion of the
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unknowns (~u0, p0, . . . ). For example, if we apply this methodology to equation (15), we
obtain

∂

∂x

[
u0

1 + εu1
1 + ε2u2

1 + · · ·
]
− 1

h

(
∂H

∂x
+ z

∂h

∂x

)
∂

∂z

[
u0

1 + εu1
1 + ε2u2

1 + · · ·
]

+
∂

∂y

[
u0

2 + εu1
2 + ε2u2

2 + · · ·
]
− 1

h

(
∂H

∂y
+ z

∂h

∂y

)
∂

∂z

[
u0

2 + εu1
2 + ε2u2

2 + · · ·
]

+
1

εh

∂

∂z

[
u0

3 + εu1
3 + ε2u2

3 + · · ·
]

= 0 (17)

Grouping now the terms multiplied by the same power of ε,

ε−1 1

h

∂u0
3

∂z

+
∂u0

1

∂x
− 1

h

(
∂H

∂x
+ z

∂h

∂x

)
∂u0

1

∂z
+
∂u0

2

∂y
− 1

h

(
∂H

∂y
+ z

∂h

∂y

)
∂u0

2

∂z
+

1

h

∂u1
3

∂z

+ ε

[
∂u1

1

∂x
− 1

h

(
∂H

∂x
+ z

∂h

∂x

)
∂u1

1

∂z

+
∂u1

2

∂y
− 1

h

(
∂H

∂y
+ z

∂h

∂y

)
∂u1

2

∂z
+

1

h

∂u2
3

∂z

]
+ · · · = 0 (18)

from where we deduce

∂u0
3

∂z
= 0 (19)

∂u0
1

∂x
− 1

h

(
∂H

∂x
+ z

∂h

∂x

)
∂u0

1

∂z
+
∂u0

2

∂y
− 1

h

(
∂H

∂y
+ z

∂h

∂y

)
∂u0

2

∂z
+

1

h

∂u1
3

∂z
= 0 (20)

∂u1
1

∂x
− 1

h

(
∂H

∂x
+ z

∂h

∂x

)
∂u1

1

∂z
+
∂u1

2

∂y
− 1

h

(
∂H

∂y
+ z

∂h

∂y

)
∂u1

2

∂z
+

1

h

∂u2
3

∂z
= 0 (21)

...

In our previous paper2 this kind of calculus is done with detail for a similar example.
To apply this method to equation (3) we need to make an hypothesis on the asymptotic

behavior of the viscosity vector. When doing the asymptotic approximation it is pointed
out by the computations that the two first components of the viscosity vector must be of
order of ε, while the third component must be or order of ε2, so let us suppose that

νε1 = νε2 = νε = εν̄, νε3 = ε2ν̄3 (22)

There is another hypothesis we need to make. Let us assume that the two first com-
ponents of the term of order zero of the asymptotic expansion of ~γ(ε) are polynomial in
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z, that is,

γ0
i =

k∑
j=0

(
zjγ0,j

i

)
(i = 1, 2) (23)

for some k. This hypothesis will make us easier to integrate with respect to z some expres-
sions and can be considered approximately true if k is large enough (by the Weierstrass
Approximation Theorem).

Finally, we can build an approximation of the solution using only the first terms of
the asymptotic expansion. For each unknown F ε defined on the original domain, we can
consider the following approximation of F (ε) in the reference domain:

F̃ (ε) = F 0 + εF 1 (24)

and then, an approximation of F ε in the original domain:

F̃ ε(tε, xε, yε, zε) = F̃ (ε)(t, x, y, z) (25)

3 THE PROPOSED SHALLOW WATER MODEL

We are able now to propose a new shallow water model. Once we have built an approx-
imation of each of the unknowns of Navier-Stokes system (3)–(13) using the asymptotic
expansion method, we can find the equations they verify and, after neglecting the higher
order terms, write them. For sake of clarity, we shall drop the ∼ symbol in what follows.

Previously to present the new model we have deduced, we shall introduce some nota-
tion: ~̄uε = (ūε1, ū

ε
2) will denote the horizontal components of the average velocity (averaged

in depth, so independent of zε); ~̌uε = (ǔε1, ǔ
ε
2) are the horizontal components of the veloc-

ity at the bottom (that is, at zε = Hε); the gradient operator ∇ε will represent here only
the horizontal gradient, that is, ∇ε = (∂/∂xε, ∂/∂yε); and we shall denote ~γ0,ε the zeroth
order approximation of the two first components of the vorticity, ~γ0,ε = (γ0,ε

1 , γ0,ε
2 ). From

(23) we deduce that

~γ0,ε =
k∑
j=0

(
zε −Hε

hε

)j
~γ0,j,ε (26)

where ~γ0,j,ε = (γ0,j,ε
1 , γ0,j,ε

2 ).
With this notation, the new shallow water model obtained by asymptotic analysis

yields:

∂hε

∂tε
+ div

(
hε~̄uε

)
= 0 (27)

∂~̄uε

∂tε
+∇ε~̄uε · ~̄uε − ~Fε

D + g∇εhε

= − 1

ρ0

∇εpεs − g∇εHε +
1

ρ0hε

(
~f εW −~f εR

)
+ ~Fε

C (28)

∂~γ0,j,ε

∂tε
+∇ε~γ0,j,ε · ~̄uε − (∇ε~̄uε)T · ~γ0,j,ε = ~Fj,ε

V (j = 0, 1, . . . , k) (29)
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where

~Fε
D = νε

{
∆ε~̄uε +∇ε(div ~̄uε) +

1

hε
[
(∇ε~̄uε)T + (∇ε~̄uε)

]
∇εhε

}
(30)

~Fε
C = 2φ

(
(sinϕε)ūε2 + (cosϕε)

(
∂(hεūε1)

∂xε
+ hε

2

∂ūε2
∂yε
− ūε2 ∂H

ε

∂yε

)
−(sinϕε)ūε1 + hε

2
∂
∂yε

[(cosϕε)ūε1] + ∂sε

∂yε
[(cosϕε)ūε1]

)
(31)

~F0,ε
V = 2φ

(
(sinϕε)γ0,0,ε

2 + ∂
∂yε

[(cosϕε)ūε1]

−(sinϕε)γ0,0,ε
1 + (cosϕε)

∂ūε2
∂yε

)
+

2νε3
(hε)2

(
γ0,2,ε

1

γ0,2,ε
2

)
(32)

~Fj,ε
V = 2φ(sinϕε)

(
γ0,j,ε

2

−γ0,j,ε
1

)
+ νε3

(j + 2)(j + 1)

(hε)2

(
γ0,j+2,ε

1

γ0,j+2,ε
2

)
(j = 1, . . . , k − 2) (33)

~Fj,ε
V = 2φ(sinϕε)

(
γ0,j,ε

2

−γ0,j,ε
1

)
(j = k − 1, k) (34)

The three components of the velocity and the pressure can be now computed for all zε:

uε1 = ūε1 + hε
k∑
j=0

[
γ0,j,ε

2

j + 1

((
zε −Hε

hε

)j+1

− 1

j + 2

)]
(35)

uε2 = ūε2 − hε
k∑
j=0

[
γ0,j,ε

1

j + 1

((
zε −Hε

hε

)j+1

− 1

j + 2

)]
(36)

uε3 = ǔε1
∂Hε

∂xε
+ ǔε2

∂Hε

∂yε
+ (Hε − zε)

(
∂ǔε1
∂xε

+
∂ǔε2
∂yε

)
+

k∑
j=0

[
(zε −Hε)j+1

(j + 1)(hε)j

(
∂Hε

∂xε
γ0,j,ε

2 − ∂Hε

∂yε
γ0,j,ε

1

)]

+
k∑
j=0

[
j

(j + 1)(j + 2)

(zε −Hε)j+2

(hε)j+1

(
∂hε

∂xε
γ0,j,ε

2 − ∂hε

∂yε
γ0,j,ε

1

)]

−
k∑
j=0

[
(zε −Hε)j+2

(j + 1)(j + 2)(hε)j

(
∂γ0,j,ε

2

∂xε
− ∂γ0,j,ε

1

∂yε

)]
(37)

pε = pεs + ρ0(sε − zε)[g − 2φ(cosϕε)ūε1] (38)

Remark.- Equations (27)–(28) can be written in terms of the flow ~Qε = hε~̄uε as
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follows:

∂hε

∂tε
+ div ~Qε = 0 (39)

∂ ~Qε

∂tε
+ div

(
~̄uε ⊗ ~Qε

)
− hε~Fε

D + ghε∇εhε

= −h
ε

ρ0

∇εpεs − ghε∇εHε +
1

ρ0

(
~f εW −~f εR

)
+ hε~Fε

C (40)

Remark.- There are two major novelties in the new shallow water model (26)–(38).
The first one is the new viscosity terms given by (30). If we compare with other shallow
water models in literature4,5, we find that all the diffusion terms that appear are different
from the viscosity terms we have deduced. In a previous article6 we have obtained a
similar model but without dependence on depth, and precisely this dependence on depth
of the velocities (35)–(37) is the second major innovation of this model.

4 NUMERICAL RESULTS

We have already compared, in our previous work6, the new viscosity terms (30) with
other that can be found in literature, so let us study in this section the improvement
achieved by using equation (29) and formulae (35)–(36). In order to do that we shall
approximate some analytical solutions of Navier-Stokes equations (3)–(13) solving nu-
merically the new model (26)–(38) and the classical shallow water model (27)–(28). In
the tables we shall present below to compare the errors committed in this numerical sim-
ulations, we shall denote by CM (Classical Model) the model given by system (27)–(28)
and by NM-k (New Model of order k) the model given by (27)–(29) with the polynomial
approximation of vorticity of order k. MacCormack7 scheme has been implemented for the
numerical resolution of the different models. This numerical method has good stability
properties and has been applied successfully to the resolution of similar problems.

Let us consider now the following exact solution of Navier-Stokes equations (3)–(13):

uε1 = −(3a2(zε)2 + 2b2z
ε + c2), uε2 = 3a1(zε)2 + 2b1z

ε + c1, uε3 = 0,

φ = 0, Hε = A1x
ε + A2y

ε + A3, hε = B1x
ε +B2y

ε +B3, (41)

pε = pεs + ρ0(sε − zε), pεs = ρ0[−6a2ν
ε
3x

ε + 6a1ν
ε
3y

ε − gsε + E],

xε ∈ [0, 10], yε ∈ [0, 2], zε ∈ [Hε(xε, yε), sε(xε, yε)], tε ∈ [0, 10],

with

A1 = 0.01, A2 = 0.05, A3 = 0, B1 = 0.05, B2 = B1A2/A1, B3 = 0.1,

a2 = 3/5, a1 = A1a2/A2, b2 = −17/20, b1 = A1b2/A2, c2 = −0.6, c1 = A1c2/A2,

g = 9.8, ρ0 = 998.2, νε1 = νε2 = νε3 = 1e-6,

and where ~f εW and ~f εR are chosen to satisfy (9)–(10). The discretization step is chosen to
be ∆xε = ∆yε = ∆zε = 0.1 and ∆tε = 0.01.
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In table 1 we can see the error committed when solving numerically system (27)–(28)
(that is, when computing only the depth and the average velocities). The error is shown
in the infinity norm, so we are calculating the maximum absolute difference between the
exact depth and the exact average velocities and their numerical approximation.

Error hε Error ūε1 Error ūε2
4.4e-5 4.2e-4 2.1e-4

Table 1: Depth and average velocities absolute errors for example (41)

These are the values usually computed by shallow water models. Now, we are able to
obtain the velocities taking into account their dependence on zε, so in table 2 we show the
errors committed when approximating the exact velocities (which depend on zε) by their
numerical estimations. We can observe that when we solve the classical model (CM) the
errors are relatively large, since we just have the average velocities to approximate the
velocities at any depth, but when we solve the new model (NM) the errors decrease as
we increase the order of the polynomial approximation of the vorticity. This is because
we improve the approximation on zε achieving an error that is only slightly worst than
the error obtained when approximating the average velocities, which is the best we could
expect.

Error uε1 Error uε2
CM 9.1e-1 1.8e-1
NM-0 3.6e-1 7.3e-2
NM-1 4.6e-4 2.5e-4

Table 2: Velocity absolute errors for example (41)

Let us show another example. We introduce this analytical solution of Navier-Stokes
equations (3)–(13):

uε1 = exp(νε2A
2tε + Ayε + zε), uε2 = uε3 = 0,

φ = 0, Hε = 0, hε = ayε + b, (42)

pε = pεs + ρ0(hε − zε), pεs = P0 − ρ0gh
ε,

xε ∈ [0, 10], yε ∈ [0, 2], zε ∈ [0, hε(yε)], tε ∈ [0, 10],

with A = 0.2, a = −0.5, b = 1.5, g = 9.8, ρ0 = 998.2, νε1 = νε2 = 1e-6, νε3 = 0, and where
~f εW and ~f εR are again chosen to satisfy (9)–(10).

In table 3 we present the absolute errors for the depth and the average velocities, and
in table 4 we show the absolute errors for velocities. We can see that the errors decrease as
the order of the polynomial approximation of the vorticity increases, almost reaching the
best result we can expect, that is, the same approximation as for the average velocities.
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Error hε Error ūε1 Error ūε2
3.4e-7 2.5e-6 1.3e-6

Table 3: Depth and average velocities absolute errors for example (42)

Error uε1 Error uε2
CM 2.2e0 1.4e-6
NM-0 5.7e-1 1.9e-6
NM-1 1.8e-1 1.9e-6
NM-2 2.7e-2 1.9e-6
NM-3 4.7e-3 1.9e-6
NM-4 5.1e-4 1.9e-6
NM-5 6.1e-5 1.9e-6
NM-6 5.5e-6 1.9e-6
NM-7 4.1e-6 1.9e-6

Table 4: Velocity absolute errors for example (42)

5 CONCLUSIONS

In classical shallow water models only depth-averaged velocities are computed. Here we
present a new shallow water model (with viscosity) that is able to compute a polynomial
approximation on depth of the velocities. In two previous papers2,6 we have obtained a
shallow water model with polynomial dependence on depth (but without viscosity) and
a shallow water model with new viscosity terms (but constant on depth). Now we have
derived a new model that combines both good qualities.

Numerical resolution of some examples where we know the exact solution of Navier-
Stokes equations (3)–(13), proves that the new model proposed is able to obtain similar
precision at any depth than the classical models obtain only for average velocities, what
we think is the best result we could expect. Consequently we recommend using our model
instead of the classical shallow water models.
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