V European Conference on Computational Fluid Dyrami
ECCOMAS CFD 2010
J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal, 14-17 June 2010

COMPARISON OF THREE NONLINEAR MODELSTO ANALYZE
WAVE PROPAGATION OVER SUBMERGED TRAPEZOIDAL
BREAKWATERS

TeixdéiraP.R.F.", PinharoL." FortesC.M.J.""

“Universidade Federal do Rio Grande — FURG
Av. Italia, km 8, Campus Carreiros, 96201-900, Brande, RS, Brasil
e-mail: pauloteixeira@furg.br

"Laboratério Nacional de Engenharia Civil
Av. do Brasil, 101, 1700-066, Lisboa, Portugal

e-mail: Ipinheiro@Inec.pt, jfortes@Inec.pt

Key words: Numerical simulation, Wave propagation, BreakwatBoussinesq

Abstract. The main objective of this paper is to evaluate tapabilities of three
numerical models to simulate wave propagation owabmerged trapezoidal
breakwaters. These models differ both in the nealitty level and the numerical
methods: (a) BOUSS3W, which is a Boussinesq tyie Blement model, that solves
the extended Boussinesq equations derived by NwbyuCOULWAVE, which is a
finite difference model that solves the nonlineguaions of Boussinesq presented by
Wei et al., considering a multi-layer concept; E)UINCO, which solves the Navier-
Stokes equations discretized in time and spaceaigfira semi-implicit two-step Taylor-
Galerkin method. Whereas the two first models amically integrated, the third is
not, so it can capture the vertical profile of eocity. BOUSS3W presents good linear
wave characteristics up to kh~3, while the secortononlinear behaviour is well-
captured up to kh~1. COULWAVE exhibits accuratedmcharacteristics up to kh~8
and nonlinear accuracy up to kh~6. Moreover, infing model, equations are deduced
using the velocity at an arbitrary distance frone tstill water level, while the second
one considers the vertical flow field approximatgda quadratic polynomial at each
layer in which the water column is divided. Twoecatudies were simulated. In the first
breakwater, downstream and upstream slopes areléqualO and 1:20, respectively.
In the second breakwater, both downstream and eastrslopes are equal to 1:2.
Numerical results are compared with experimentadoim terms of surface elevation
and energy spectrum distribution at various poi@seamline distribution obtained by
FLUINCO are presented, showing the influence ofie@r circulation on the behavior
of the surface elevation. In general, results faraly nonlinear cases are similar
among models, but for highly nonlinear cases, theeed=LUINCO has presented better
results because of its vertical discretization.
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1 INTRODUCTION

Waves experiment significant transformation in shdpeight, direction and velocity
when they propagate from deep to shallow wateréaB#on, diffraction, reflection,
breaking, and other non linear phenomena associatbdvave-wave and wave-current
interaction are some causes of these modifications.

The numerical models based on Boussinesq equdisnresbeen adopted to simulate
typical non linear coastal engineering problemshim last decades. Examples of these
types of models are BOUSS3W (BOUSSinesq model withrnal Irregular Wave
generation) [1] and COULWAVE [2].

BOUSS3W, that is valid from intermediate to shalleaters, solves the extended
Boussinesq equations deduced by Nwogu [3]. A tfpeelocity profile in a pre-defined
depth is assumed to the vertical integration ofdheations. The model can simulate
non linear and dispersive propagation of regular isr@gular waves, including some of
the most important phenomena that occur in thetabasgions. It uses the SPRINT
package [4] for the temporal integration and théefkin method with a non structured
mesh of finite elements for spatial discretization.

COULWAVE is a finite difference model that solvelsetfully non linear and
dispersive Boussinesq equations. Lynett and Liu uke multi-layer concept in which
the water column is divided by several layers. @abeuracy depends on the numbers of
layers enabling simulations in deep waters.

COULWAVE exhibits accurate linear characteristigs to kh~8 and nonlinear
accuracy up to kh~6, while BOUSS3W only presemtsdr wave characteristics up to
kh~3, and the second-order nonlinear behaviouriseaptured up to kh~1. Moreover,
COULWAVE can simulate more wave transformation pimeana compared to
BOUSS3W such as refraction (due to the current);upp and run-down. However,
BOUSS3W model presents higher potential to simulséee propagation in 2DH
regions such as in harbour regions or in irregdlased boundary zones. In fact, firstly,
the computational domain can be discretized witimige element mesh better adapted
to irregular areas and secondly, it considers whffepartial reflection conditions along
the boundaries of the computational domain, thiumsulating different structures and
boundary types that can occur in harbours. On therdhand, COULWAVE does not
consider the partial reflection condition.

Models based on the integration of the Navier-Sodguations, initially developed
in hydrodynamic areas, enable an accurate simaolatiche wave transformations in
small coastal regions. Teixeira [5] has developedde, named FLUINCO, which uses
a fractioned method to simulate 3D incompressililéd fflow problems with free
surface. It uses the two-step semi implicit Tay®alerkin method to discretize the
Navier-Stokes equations in time and in space. Adlirtetrahedral element that has the
advantage to adapt to complex geometry domainsaagmbd computational efficiency
is adopted. An arbitrary lagrangean eulerian (A&)mulation is employed to solve
problems with large relative movements among bodmes$ surfaces and free surface
movements. The spatial distribution of the meshosi®f minimizes the element
distortions using functions that consider the ieflae of the velocity of each node
belonging to the boundary surfaces.

Whatever the numerical model characteristics, thmilation of wave propagation
over submerged breakwaters are important testaliwate wave propagation models. In
these cases, the harmonic generation [8,9] anddtiex formation, depending on the
geometry [10], also occur. When waves propagatdeep waters over a submerged
obstacle, part of the wave energy is transferrechfthe primary wave component to
their harmonics, contributing to increase non liitgaHarmonic generation phenomena
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that occur when waves propagate over obstacle$, asinatural reefs, were studied
theoretically [11], experimentally [6,7,12] and nemcally [7,12,13,14,15,16,17,18]. In
some situations, the correct simulation of the floam only be figured out considering
the viscosity effects [19]. Huang and Dong [10]dstdl the interaction between solitary
waves and rectangular submerged breakwaters usimgdel based on 2D Navier-
Stokes equations and concluded that the flow ardhedbreakwater is laminar, without
turbulence. The experimental studies carried oufibg and Kim [19] and Zhuang and
Lee [20] show that velocity fluctuations do notsbaround the breakwater.

Wave propagations over two types of trapezoidablomaters are studied in this
paper. In the first case, which is studied expenitaéy by Dingemans [6], downstream
and upstream slopes are 1:20 and 1:10, respectivetile second one that is analyzed
by Ohyama et al. [7] both downstream and upstrdapes are 1:2.

Chapter 2 describes the numerical models BOUSS3WJIGVAVE and FLUINCO
whereas Chapter 3 shows the numerical simulatiow&we propagation over two types
of breakwaters. Finally, Chapter 4 presents thelosion of this paper.

2 NUMERICAL MODELS

2.1 BOUSS3W mod€

BOUSS3W solves the extended Boussinesq equatiothsced by Nwogu [3] as
follows:
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where the velocity vectou =u(x,y,t) =(u,v) is the bi-dimensional velocity field,
calculated in the deptd,, /7 =/7(x, y,t) is the free surface elevation, h is the depth and

g is the gravity acceleration. The terms on thhatrigand side of the equations are added
terms to the original equations to take into actopartial reflection and transmission
trough porous structures (whene:is the porosity,f,, f, are the laminar and turbulent

friction factors), energy dissipation due to bottbiiation and wave breaking (wherg,

is the bottom friction factor and is the eddy viscosity due to breaking waves), the
wave generation inside the domain using a sourpetiin (whereS; is the source

function) and a viscous term (wherg is the viscosity) used to control numerical

instabilities and to absorb outgoing waves in sjgoagers placed at the fully absorbing
boundaries.

The model uses SPRINT package [4] for the tempiottagration. This software
employs a general method to solve ordinary padii®rential equation systems using
both suitable time steps and variable integratioasieio In bi-dimensional cases, the
jacobian matrix is factorized because it is sparse.

The Galerkin method with a non structured meshnitief elements is used for spatial
discretization. This mesh is generated throughwdonaatic generator GMALHA [21],
developed exclusively for wave propagation models.

Regular or irregular waves can be generated ubmgaurce function condition [22].
Total or partial reflection as well as total absmnp are the boundary conditions
implemented in the model.
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2.2 COULWAVE modd

COULWAVE [2] is a finite difference model to simtéastrong non linear (the
relation between the wave amplitude and the depthpi to 1) and dispersive wave
propagation in variable depth zones. The contin@thyd momentum Boussinesq
equations are integrated along the depth by usimguli-layer concept. A velocity
profile for each layer, coincident in the bounddrgtween neighboring layers, is
assumed. Therefore, these equation systems etabégpoplicability of the model to be
extended for deep water, simulating linear chareties up to kh~8 and second order
non linear behavior up to kh~6. Mass conservatioth @momentum equations for one
layer can be expressed by:

10h d¢

P e o
—,ufD.{gOngg h_ (6. ;h)k12}D(D.ul){gg(zz_hz ~(e,¢ +h)k, }DTl} =0(u?)
5u 5 (k2 (u,.0K, )OT, +k,0(u,.OT,) + k, (u,.0k, )O(0u, )
T ”TD””D“”fat{éD(D'ul)+k1DTl} +£ﬂ{+l§D(U1.D(D.u1)) ] ()
+ so,uf{TlDTl - D(ca;lﬂ + sgufm[c ST, —i;% -¢ ul.DTl] + gjﬂfm[czz (Ow,) - ul.EI(EI.ul))} =0(u?)
where
T1:D.(hu1)+£103:] ; k=ah+B¢c ; &, :Zl: U, :T:-

{ is the free surface elevatidmjs the depthy, is the horizontal velocity vector in the
depth defined in each layer agds the gravity accelerationy, and B, coefficients are

defined by users, is the wave amplituddy, is the depth anfj is the wavelength. The
horizontal velocity of the vertical profile is ginevy:

U, =u, _:ug{ 212 ;kiz D(D'ul)+ (21 - kl) DTl} +O(,u§) ()

where Nwogu [3] suggests=-0.53h.

The solution for these equations is similar tofthrenulation presented by Wei et al.
[22] that use the Adams-Bashforth predictor-cooedcheme. The finite difference
scheme consists in the explicit 3rd order AdamdiBath scheme for the predictor
step, and the implicit 4th order one for the cawestep in time. The central finite
difference with accuracy of the 4th order is usedfirst order spatial derivates. The
superior order for spatial and temporal derivatas second order accuracy, through
three-point central schemes. The model has accuga¢gAt* in time and up td\x* in
space.

Two types of boundary conditions are applied: totfllection and radiation. For the
former, Wei et al.’s [22] methodology is used whiier the latter, sponge layer
according to Kirby et al. [23] is employed.

Lynett and Liu [2,24] added other terms to the éigua to consider the bottom
friction, breaking waves and wave generation initierior of the domain.
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2.3 FLUINCO mode
Basically, the algorithm consists in the followisigps [25]:
(a) Calculate non-corrected velocity &tf2, where the pressure term istahstant,
according to Eq. (6).

s At 0f a7l 9
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wherepis the specific masg,is the pressuray, = pv;, f; =v;(ov))=v,U;, v are
the velocity components,;\are the velocity components of the reference systed
Tj is the viscous stress tensoy £1,2,3).

Wnaﬂ (ij=1,2,3), (6)

(b) Update the dynamic pressyratt+At, given by the Poisson equation:
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whereAp = p"*-p".

(c) Correct the velocity dtAt/2, adding the pressure variation term froto t+At/2,
according to the equation:
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(d) Calculate the velocity atrAt using variables updated in the previous steps as
follows:
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The standard Galerkin weighted residual methogpdied to discretize Eq. (6) to (9)
in space, using a tetrahedra element. A constapgesfunction is used for variables at
t+At/2, while a linear shape function is employed atdt+At.

FLUINCO model assumes the free surface subjected tmnstant atmospheric
pressure (normally, the reference value is nulf) emposes the free surface kinematic
boundary condition (KBC), using the ALE formulatierpressed as [26]:

0_/7 + ((S)Vi - Oy, )0_/7 = i=1,23), (10)
ot 0Xi

where 77 is the free surface elevatiofy, and )y, are fluid and mesh velocity

components in the free surface, respectively. Aarean formulation is used forandy
direction on the horizontal plane and an ALE foratign is employed ta direction.
The temporal discretization of the KBC is madeha same way as in the momentum
equations, using triangular elements coincidenh fiaces of the tetrahedra that belong
to the free surface.

The spatial distribution of the mesh velocity mirges the element distortions
through the functions that weight the influenceha velocity of each node belonging to
surface boundaries.
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3 NUMERICAL SIMULATIONS

Two different configurations of the trapezoidal dkeaters, with different level of
non-linearity, are used to test the behaviour efrthmerical models. In the first case,
the downstream and upstream slopes are 1:20 afd redpectively [6]. In the second
one, both slopes are 1:2 [7], where the non-lie$facts are more significant.

3.1 Breakwater with slopes1:20 and 1:10

Figure 1 shows the channel and the submerged betakweometries, and the
position of the gauges. The channel is 23m in len@4m and 0.1m are the maximum
and the minimum depths, respectively. In the cheanance, a monochromatic wave
is generated with a period of 2.02s and an amgitfd.01m.

Generator

I 2 3 4 3 o 7 8 9 10 11 12
\

| | | | I — | |

P I T
— 19.0m

(35

40m 5. 7m 10. im 12, :rm H Sm 145111 15.7m IT Im Om

6 .Om

0.4m

0.0m 1 Z.Om M.Om I'I.Om 23.0m

Figure 1: Channel geometry for the 1:20 and 1:Hakwater

Table 1 presents some parameters for this casg. $tlta, even on the platform, has
small values in comparison with breaking limit qfpaoximately 0.8 [27]. The case
involves intermediate water for the channel (0.8%h < 3.142) and shallow water for
the platform (kh < 0.314). Ursell numbers (Ur = dgHif) show that the non-linear
effects on the platform are more intensive.

H/h kh Ur
Channel (h = 0.4m) 0.050 | 0.674 5.0
Platform (h = 0.1m) 0.259 | 0.318]| 103.6

Table 1: Wave parameters for the 1:20 and 1:10kbrair

Table 2 presents periods, frequencies and wavélsrgincerning the fundamental
frequency and the harmonic components that ocamgathe wave propagation. The
wavelength was estimated according to the dispersguation of the linear theory.
These values are references to determine disdietizan time and space to be used in
the modeling.

Fundamental | 2" harmonic | 3®harmonic | 4™ harmonic
Period (9 2.02 1.01 0.67 0.50
Frequency (Hz) 0.50 1.00 1.50 2.00
Wavelength (m) 3.73 1.46 0.70 0.39

Table 2: Period, frequency and wavelength concgrtfie fundamental frequency, arll, 3 and 4"
harmonics for the 1:20 and 1:10 breakwater

The numerical domain used by BOUSS3W is 39m logn(2 8m on each side to
accommodate the two sponge layers and the souncéidn) and its discretization was
made by linear finite elements with two nodal psifthe grid spacing was = 0.01m,
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which led to 3901 nodes. Wave generation was madwy uhe source function where
its centre is situated at=x8 m and has a width of one wavelength. At both gBas
long sponge layers were placed. A zero initial ¢omal and no diffusion condition were
used in this calculation. The calculations werdqgrered during approximately 6006
with At = 0.01s, in order to enable the wave field toalep fully in the whole
computational domain.

The COULWAVE numerical domain is 32 m long and lwide. The bathymetry
was reproduced by discretization using a spacingxof 0.05 m. The COULWAVE
model generates a finite difference grid basedhennbinimum number of points per
wavelength given by the user, which in this case ®@. The Courant number was
equal to 0.1. Two layers were considered in theakeutations. Two absorbing
boundaries were considered at the beginning atitkagnd of the domain with a length
of one wavelength. A friction coefficient equal 1d0x10* was adopted. The source
function for the wave generation is located a®&Om. The total simulation time was
300s. For the remaining model parameters, the valuggested in the COULWAVE
model user’s manual [2] were assumed in the fitshapt.

FLUINCO used a mesh with 88700 elements and 37285 Twenty layers of
elements were used in vertical direction, wherellselaments are located near the
bottom and the free surface. Along the channeletement sizes vary frofix = 0.08m
in the boundary t@\x = 0.025m around the platform. In the transversalcdtioa, only
one layer of elements is used, because the behaivibe flow is bi-dimensional. In the
entrance of the domain, the wave generation camdis imposed while at the end the
radiation condition is imposed. The velocity comgots are null on the bottom and the
KBC is imposed in the free surface. The velocitynponent perpendicular to the
surface is null for lateral walls (symmetry conalitfj. As an initial condition, the
velocity field is null and the pressure one is logdatic. The time step is 0.003s, a fact
that satisfies the Courant stability condition.

Figure 2 shows the free surface elevations in gakigcated downstream the
breakwater (x=5.7m); in gauge 6, on the platforml&5m); in gauge 8, in the middle
of the upstream slope (x=15.7m); and in gauge hlthe upstream and far from the
breakwater (x=23m). Results obtained by numericablels are compared with the
experimental ones presented by Dingemans [6].

In general, there is good agreement between nuaheesults and experimental ones
in gauges 3 and 6. BOUSS3W showed a slightly highest in gauge 3. In gauge 6,
FLUINCO presents slightly smooth surface deformatihile BOUSS3W differs a
little more in oscillations with higher frequencids gauges 8 and 11, corresponding to
downstream, the nonlinear effects are more sigmticThe deformations in gauge 8 are
well represented by FLUINCO and COULWAVE. Althoutite FLUINCO results get
closer to the experimental ones in some regiomsetare difficulties in representing the
deformations related to higher harmonics, possthlg to the lack of an appropriate
discretization to capture the nonlinear phenomémahis gauge, BOUSS3W shows
discrepancies both in the shape and in the magnibfidieformations. FLUINCO has a
better behavior in relation to the others in galijeCOULWAVE shows good results,
but differs somewhat in the waves of higher freqies On the other hand, BOUSS3W
does not represent the phenomenon well, with sggmt differences compared to other
models.
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Figure 2: Free surface elevation of the 1:20 A0 breakwater

Figure 3 shows the frequency spectra obtained bgetsoin the gauges and a
comparison with the experimental results. The diffiees found in the free surface
elevation are confirmed in Figure 3, which showffedences in the intensity of
harmonic components, mainly in gauges located at éhd of the channel. The
numerical models adequately simulate the positibthe peaks of the fundamental
frequency and the harmonic components throughautdtimain. However, there are
some differences in the amplitude of these pealseaally in gauges 8 and 11. The
BOUSS3W model results do not show the presencheothird harmonic in gauge 11,
unlike the other models.
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Figure 3: Numerical and experimental frequency spetin the gauges of the breakwater 1:20 and 1:10

Figure 4 presents the streamlines around the @mstdope of the breakwater in
eleven instants completing one wave period obtamedLUINCO. We can observe
that the flow separation and the vortex do notteatsall instants, due to the mild
inclination of the upstream slope.

t=19.6s

t=20.0s

7 & ',: -

t=21.0s

Figure 4: Streamlines of the 1:20 and 1:10 breaéwvat

3.2 Breakwater with slopes1:2

In this case, the length of the channel is 35m tiedmaximum and the minimum
depths are 0.5m and 0.15m, respectively (See Fidgn3he entrance of the channel, a
monochromatic wave is generated with a period 682. related to a wavelength of
5.66m in the channel, and an amplitude of 0.025ris problem is case 6 studied by
Ohyama et al. [7] who analyzed six different typésvaves experimentally. Table 3
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shows some parameters that characterize the prpbdoulated according to the linear
theory. The Ursell number on the platform is 2H@licating the strong non-linearity in
this region. Parameter H/h shows that breaking doesven occur on the platform.

Generator

| | |
| | |

12.9m 15.0m

0.5m

10.0m 10.7m 12.2m 12.9m

0.0m 35.0m

Figure 5: Geometry of the channel for the 1:2 bvestkr

H/h kh Ur
Channel (h = 0.5m) 0.100 | 0.555 14.1
Platform (h = 0.15m) | 0.355 | 0.294| 210.0

Table 3: Wave parameters for the 1:2 breakwater

Table 4 shows periods, frequencies and wavelengthserning the fundamental
frequency and the harmonic components that ocomgahe wave propagation.

The numerical domain used by BOUSS3W is 43m I@%n(+ 8m on the left side
to accommodate the sponge layer and the sourcéidop@nd its discretization was
made by linear finite elements with two nodal psifthe grid spacing was = 0.01m,
which led to 4301 nodes. The centre of the sowrnetion is situated at x=8 m and has
a width of one wavelength. At both ends, 2m longnge layers were placed. A zero
initial condition and no diffusion condition weresad in this calculation. The
calculations were performed during approximatelQ@Q, with At = 0.01s, in order to
enable the wave field to develop fully in the whotemputational domain.

The COULWAVE numerical conditions in this case werete similar to the ones
used in section 3.1. A higher number of points pawvelength equal to 70 was
considered.

A mesh with 120200 elements and 50526 nodes was fiaseFLUINCO in this
simulation. The element sizes along the channgl batween dx=0.08m at the ends and
dx=0.01m on the platform. The boundary and thdaihitonditions are similar to the
ones in the previous case, and 0.002s was thestiepe

Fundamental | 2" harmonic | 39harmonic | 4™ harmonic
Period (9) 268 1.34 0.89 0.67
Frequency (Hz) 0.373 0.746 1.124 1.493
Wavelength (m) 5.66 2.42 1.22 0.70

Table 4: Period, frequency and wavelength relateti¢ fundamental frequency, arif, 3¢, and &'
harmonics for the 1:2 breakwaters

Figure 6 shows the free surface elevations in gadgyand 5 (gauge positions are
indicated in Fig. 5). Numerical results are comgawith the experimental ones
presented by Ohyama et al. [7]. The FLUINCO andGR#JLWAVE models represent
the surface deformation recorded in gauge 3 wdlilevBOUSS3W presents some
numerical oscillations of higher frequency. Theadefations of gauge 5 indicate that

10
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the nonlinearity increases. In this case, FLUINCGtares the variation of the surface
elevation more accurately. COULWAVE shows some migak disturbances, but
reproduces the experimental results reasonablyet@r, BOUSS3W presents smooth
results, which are different both in the shapeiarttie magnitude of the deformations.
Figure 7 shows frequency spectra obtained in gaBge®d 5. The fundamental and
the harmonic waves are well represented by the lsoblet their amplitudes differ. The
FLUINCO and the COULWAVE results are closer for the gauges. There are some
differences from those obtained by BOUSS3W, espigdia gauge 5, which does not

show the presence of the fourth harmonic and thewong.

gauge 3

FLUINCO

—-— === COULWAVE
e+ BOUSSIiw

EXPERIMENTAL

gauge 5

0.5 1.0 15
T

FLUINCO
—-—-——-— COULWAVE
e+ BOUSSIiw

EXPERIMENTAL o]

"A

0.5 1.0 15
T

2.0

Figure 6: Free surface elevation for the 1:2 bresikwin gauges 3 and 5.
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Figure 7: 1:2 Breakwater case. Frequency spetigauges 3 and 5.

Streamlines during one wave period obtained by RNQD are presented in Fig. 8.

Unlike the previous case, a vortex, located betwbherupstream slope and the bottom,
occurred during part of the wave period.
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Figure 8: Streamlines of the 1:2 breakwater
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4 CONCLUSIONS

Results of three numerical models (FLUINCO, COULWAWnd BOUSS3W) for
two cases of trapezoidal breakwaters with differdopes are compared in this paper.
While FLUINCO is a model based on the direct in&tign of the Navier-Stokes
equations, COULWAVE and BOUSS3W solve the exteriBiealssinesq equations.

The first case study deals with upstream and doeast slopes of 1:20 and 1:10,
respectively. Its results obtained by the modelseweompared with Dingemans’
experimental data [6]. A comparison of the surfalevations and the energy spectrum
for some gauges along the channel showed that thaelsy provided good results.
Although the FLUINCO results have been somewhatathesl, they were closer to the
experimental ones, including the ones in the gaydgsed on the downstream, where
nonlinear effects are more significant. COULWAVEoped to be a robust model,
representing the surface deformation adequately gveones with strong nonlinearity.
Moreover, the BOUSS3W model represented the dettwnsin the upstream of the
breakwater well, but there were some differencethéndownstream, where high order
harmonics were not captured. Streamlines over avpaviod obtained by FLUINCO
show that there is no flow separation in this case.

The analysis of the 1:2 breakwater slope case sthavatrong influence of nonlinear
effects on the results of the surface elevation thedenergy spectrum. The numerical
results were compared with experimental ones ptedeby Ohyama et al [7]. The
vertical velocity field obtained by FLUINCO showehkat a vortex of non-turbulent
origin was formed in the flow. FLUINCO obtained uéis closer to the experimental
ones, including the ones in the downstream of tieakwater, where the nonlinearity
effects are more significant. COULWAVE presentedg@d behavior, with some
numerical oscillations of higher frequency in th@ewmhstream regions. The numerical
disturbance presented by BOUSS3W is intensifiethendownstream zones, where the
shape of the surface deformations was not adeguai@lesented.

The two cases showed that FLUINCO captures themeanl effects of the flow more
accurately, due to the fact that this model considee influence of the vertical
circulation in the flow, unlike the Boussinesq misdgCOULWAVE and BOUSS3W).
They also indicated better robustness of COULWAMWmpared with BOUSS3W,
possibly due to the higher order nonlinear terncdushed in the Boussinesq equations.
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On the other hand, FLUINCO consumes more compuraltiome that justifies the use
of Boussinesq models in which the vertical movemaogés not influence the flow
behavior significantly.
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