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Abstract. The main objective of this paper is to evaluate the capabilities of three 
numerical models to simulate wave propagation over submerged trapezoidal 
breakwaters. These models differ both in the nonlinearity level and the numerical 
methods: (a) BOUSS3W, which is a Boussinesq type finite element model, that solves 
the extended Boussinesq equations derived by Nwogu; (b) COULWAVE, which is a 
finite difference model that solves the nonlinear equations of Boussinesq presented by 
Wei et al., considering a multi-layer concept; (c) FLUINCO, which solves the Navier-
Stokes equations discretized in time and space through a semi-implicit two-step Taylor-
Galerkin method. Whereas the two first models are vertically integrated, the third is 
not, so it can capture the vertical profile of the velocity. BOUSS3W presents good linear 
wave characteristics up to kh~3, while the second-order nonlinear behaviour is well-
captured up to kh~1. COULWAVE exhibits accurate linear characteristics up to kh~8 
and nonlinear accuracy up to kh~6. Moreover, in the first model, equations are deduced 
using the velocity at an arbitrary distance from the still water level, while the second 
one considers the vertical flow field approximated by a quadratic polynomial at each 
layer in which the water column is divided. Two case studies were simulated. In the first 
breakwater, downstream and upstream slopes are equal to 1:10 and 1:20, respectively. 
In the second breakwater, both downstream and upstream slopes are equal to 1:2. 
Numerical results are compared with experimental ones in terms of surface elevation 
and energy spectrum distribution at various points. Streamline distribution obtained by 
FLUINCO are presented, showing the influence of vertical circulation on the behavior 
of the surface elevation. In general, results for weakly nonlinear cases are similar 
among models, but for highly nonlinear cases, the code FLUINCO has presented better 
results because of its vertical discretization. 
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1 INTRODUCTION 

Waves experiment significant transformation in shape, height, direction and velocity 
when they propagate from deep to shallow waters. Refraction, diffraction, reflection, 
breaking, and other non linear phenomena associated with wave-wave and wave-current 
interaction are some causes of these modifications. 

The numerical models based on Boussinesq equations have been adopted to simulate 
typical non linear coastal engineering problems in the last decades. Examples of these 
types of models are BOUSS3W (BOUSSinesq model with Internal Irregular Wave 
generation) [1] and COULWAVE [2]. 

BOUSS3W, that is valid from intermediate to shallow waters, solves the extended 
Boussinesq equations deduced by Nwogu [3]. A type of velocity profile in a pre-defined 
depth is assumed to the vertical integration of the equations. The model can simulate 
non linear and dispersive propagation of regular and irregular waves, including some of 
the most important phenomena that occur in the coastal regions. It uses the SPRINT 
package [4] for the temporal integration and the Galerkin method with a non structured 
mesh of finite elements for spatial discretization. 

COULWAVE is a finite difference model that solves the fully non linear and 
dispersive Boussinesq equations. Lynett and Liu used the multi-layer concept in which 
the water column is divided by several layers. The accuracy depends on the numbers of 
layers enabling simulations in deep waters. 

COULWAVE exhibits accurate linear characteristics up to kh~8 and nonlinear 
accuracy up to kh~6, while BOUSS3W only presents linear wave characteristics up to 
kh~3, and the second-order nonlinear behaviour is well-captured up to kh~1. Moreover, 
COULWAVE can simulate more wave transformation phenomena compared to 
BOUSS3W such as refraction (due to the current), run-up and run-down. However, 
BOUSS3W model presents higher potential to simulate wave propagation in 2DH 
regions such as in harbour regions or in irregular closed boundary zones. In fact, firstly, 
the computational domain can be discretized with a finite element mesh better adapted 
to irregular areas and secondly, it considers different partial reflection conditions along 
the boundaries of the computational domain, thus, simulating different structures and 
boundary types that can occur in harbours. On the other hand, COULWAVE does not 
consider the partial reflection condition. 

Models based on the integration of the Navier-Stokes equations, initially developed 
in hydrodynamic areas, enable an accurate simulation of the wave transformations in 
small coastal regions. Teixeira [5] has developed a code, named FLUINCO, which uses 
a fractioned method to simulate 3D incompressible fluid flow problems with free 
surface. It uses the two-step semi implicit Taylor Galerkin method to discretize the 
Navier-Stokes equations in time and in space. A linear tetrahedral element that has the 
advantage to adapt to complex geometry domains and a good computational efficiency 
is adopted. An arbitrary lagrangean eulerian (ALE) formulation is employed to solve 
problems with large relative movements among bodies and surfaces and free surface 
movements. The spatial distribution of the mesh velocity minimizes the element 
distortions using functions that consider the influence of the velocity of each node 
belonging to the boundary surfaces. 

Whatever the numerical model characteristics, the simulation of wave propagation 
over submerged breakwaters are important tests to validate wave propagation models. In 
these cases, the harmonic generation [8,9] and the vortex formation, depending on the 
geometry [10], also occur. When waves propagate in deep waters over a submerged 
obstacle, part of the wave energy is transferred from the primary wave component to 
their harmonics, contributing to increase non linearity. Harmonic generation phenomena 
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that occur when waves propagate over obstacles, such as natural reefs, were studied 
theoretically [11], experimentally [6,7,12] and numerically [7,12,13,14,15,16,17,18]. In 
some situations, the correct simulation of the flow can only be figured out considering 
the viscosity effects [19]. Huang and Dong [10] studied the interaction between solitary 
waves and rectangular submerged breakwaters using a model based on 2D Navier-
Stokes equations and concluded that the flow around the breakwater is laminar, without 
turbulence. The experimental studies carried out by Ting and Kim [19] and Zhuang and 
Lee [20] show that velocity fluctuations do not exist around the breakwater. 

Wave propagations over two types of trapezoidal breakwaters are studied in this 
paper. In the first case, which is studied experimentally by Dingemans [6], downstream 
and upstream slopes are 1:20 and 1:10, respectively. In the second one that is analyzed 
by Ohyama et al. [7] both downstream and upstream slopes are 1:2. 

Chapter 2 describes the numerical models BOUSS3W, COULWAVE and FLUINCO 
whereas Chapter 3 shows the numerical simulation for wave propagation over two types 
of breakwaters. Finally, Chapter 4 presents the conclusion of this paper. 

2 NUMERICAL MODELS 

2.1 BOUSS3W model 

BOUSS3W solves the extended Boussinesq equations deduced by Nwogu [3] as 
follows: 
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where the velocity vector ),(),,( vutyx == uu  is the bi-dimensional velocity field, 

calculated in the depth αZ , ( )tyx ,,ηη =  is the free surface elevation, h is the depth and 

g is the gravity acceleration. The terms on the right hand side of the equations are added 
terms to the original equations to take into account: partial reflection and transmission 
trough porous structures (where: n  is the porosity, tl ff ,  are the laminar and turbulent 

friction factors), energy dissipation due to bottom friction and wave breaking (where wf  

is the bottom friction factor and υ  is the eddy viscosity due to breaking waves), the 
wave generation inside the domain using a source function (where fS  is the source 

function) and a viscous term (where sυ  is the viscosity) used to control numerical 

instabilities and to absorb outgoing waves in sponge layers placed at the fully absorbing 
boundaries. 

The model uses SPRINT package [4] for the temporal integration. This software 
employs a general method to solve ordinary partial differential equation systems using 
both suitable time steps and variable integration order. In bi-dimensional cases, the 
jacobian matrix is factorized because it is sparse. 

The Galerkin method with a non structured mesh of finite elements is used for spatial 
discretization. This mesh is generated through an automatic generator GMALHA [21], 
developed exclusively for wave propagation models. 

Regular or irregular waves can be generated using the source function condition [22]. 
Total or partial reflection as well as total absorption are the boundary conditions 
implemented in the model. 
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2.2 COULWAVE model 

COULWAVE [2] is a finite difference model to simulate strong non linear (the 
relation between the wave amplitude and the depth is up to 1) and dispersive wave 
propagation in variable depth zones. The continuity and momentum Boussinesq 
equations are integrated along the depth by using a multi-layer concept. A velocity 
profile for each layer, coincident in the boundary between neighboring layers, is 
assumed. Therefore, these equation systems enable the applicability of the model to be 
extended for deep water, simulating linear characteristics up to kh~8 and second order 
non linear behavior up to kh~6. Mass conservation and momentum equations for one 
layer can be expressed by: 
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ζ is the free surface elevation, h is the depth, 1u  is the horizontal velocity vector in the 
depth defined in each layer and g is the gravity acceleration. 1α and 1β  coefficients are 
defined by users, ao is the wave amplitude, ho is the depth and lo is the wavelength. The 
horizontal velocity of the vertical profile is given by: 
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where Nwogu [3] suggests z1 = -0.531h. 
The solution for these equations is similar to the formulation presented by Wei et al. 

[22] that use the Adams-Bashforth predictor-corrector scheme. The finite difference 
scheme consists in the explicit 3rd order Adams-Bashforth scheme for the predictor 
step, and the implicit 4th order one for the corrector step in time. The central finite 
difference with accuracy of the 4th order is used for first order spatial derivates. The 
superior order for spatial and temporal derivates has second order accuracy, through 
three-point central schemes. The model has accuracy up to ∆t4 in time and up to ∆x4 in 
space.     

Two types of boundary conditions are applied: total reflection and radiation. For the 
former, Wei et al.’s [22] methodology is used while for the latter, sponge layer 
according to Kirby et al. [23] is employed. 

Lynett and Liu [2,24] added other terms to the equations to consider the bottom 
friction, breaking waves and wave generation in the interior of the domain. 
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2.3 FLUINCO model 

Basically, the algorithm consists in the following steps [25]: 

(a) Calculate non-corrected velocity at ∆t/2, where the pressure term is at t instant, 
according to Eq. (6). 
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where ρ is the specific mass, p is the pressure, viiU ρ= , ( ) Uf ijijij vvv == ρ , vi are 

the velocity components, wi are the velocity components of the reference system and 
τij is the viscous stress tensor (i,j.=1,2,3). 
 

(b) Update the dynamic pressure p at t+∆t, given by the Poisson equation: 
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where ppp nn −=∆ +1 . 

(c) Correct the velocity at t+∆t/2, adding the pressure variation term from t to t+∆t/2, 
according to the equation: 
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(d) Calculate the velocity at t+∆t using variables updated in the previous steps as 
follows: 
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The standard Galerkin weighted residual method is applied to discretize Eq. (6) to (9) 
in space, using a tetrahedra element. A constant shape function is used for variables at 
t+∆t/2, while a linear shape function is employed at t and t+∆t. 

FLUINCO model assumes the free surface subjected to a constant atmospheric 
pressure (normally, the reference value is null) and imposes the free surface kinematic 
boundary condition (KBC), using the ALE formulation expressed as [26]: 
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where η is the free surface elevation,v)(s
i and w)(s

i are fluid and mesh velocity 

components in the free surface, respectively. An eulerian formulation is used for x and y 
direction on the horizontal plane and an ALE formulation is employed to z direction. 
The temporal discretization of the KBC is made in the same way as in the momentum 
equations, using triangular elements coincident with faces of the tetrahedra that belong 
to the free surface. 

The spatial distribution of the mesh velocity minimizes the element distortions 
through the functions that weight the influence of the velocity of each node belonging to 
surface boundaries. 
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3 NUMERICAL SIMULATIONS 

Two different configurations of the trapezoidal breakwaters, with different level of 
non-linearity, are used to test the behaviour of the numerical models. In the first case, 
the downstream and upstream slopes are 1:20 and 1:10, respectively [6]. In the second 
one, both slopes are 1:2 [7], where the non-linear effects are more significant. 

3.1 Breakwater with slopes 1:20 and 1:10  

Figure 1 shows the channel and the submerged breakwater geometries, and the 
position of the gauges. The channel is 23m in length, 0.4m and 0.1m are the maximum 
and the minimum depths, respectively. In the channel entrance, a monochromatic wave 
is generated with a period of 2.02s and an amplitude of 0.01m. 

 

Figure 1: Channel geometry for the 1:20 and 1:10 breakwater 

Table 1 presents some parameters for this case study. H/h, even on the platform, has 
small values in comparison with breaking limit of approximately 0.8 [27]. The case 
involves intermediate water for the channel (0.314.<.kh.<.3.142) and shallow water for 
the platform (kh < 0.314). Ursell numbers (Ur = gHT2/h2) show that the non-linear 
effects on the platform are more intensive. 

 H/h kh Ur 
Channel (h = 0.4m) 0.050 0.674 5.0 
Platform (h = 0.1m) 0.259 0.318 103.6 

Table 1: Wave parameters for the 1:20 and 1:10 breakwater  

Table 2 presents periods, frequencies and wavelengths concerning the fundamental 
frequency and the harmonic components that occur along the wave propagation. The 
wavelength was estimated according to the dispersion equation of the linear theory. 
These values are references to determine discretizations in time and space to be used in 
the modeling. 

  Fundamental 2nd harmonic 3rd harmonic 4th harmonic 
Period (s) 2.02 1.01 0.67 0.50 

Frequency (Hz) 0.50 1.00 1.50 2.00 
Wavelength (m) 3.73 1.46 0.70 0.39 

Table 2: Period, frequency and wavelength concerning the fundamental frequency, and 2nd, 3rd and 4th 
harmonics for the 1:20 and 1:10 breakwater 

The numerical domain used by BOUSS3W is 39m long (23m + 8m on each side to 
accommodate the two sponge layers and the source function) and its discretization was 
made by linear finite elements with two nodal points. The grid spacing was ∆x.=.0.01m, 
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which led to 3901 nodes. Wave generation was made using the source function where 
its centre is situated at x.=.8 m and has a width of one wavelength. At both ends, 2.m 
long sponge layers were placed. A zero initial condition and no diffusion condition were 
used in this calculation. The calculations were performed during approximately 6000∆t, 
with ∆t = 0.01s, in order to enable the wave field to develop fully in the whole 
computational domain. 

The COULWAVE numerical domain is 32 m long and 1 m wide. The bathymetry 
was reproduced by discretization using a spacing of ∆x.=.0.05 m. The COULWAVE 
model generates a finite difference grid based on the minimum number of points per 
wavelength given by the user, which in this case was 50. The Courant number was 
equal to 0.1. Two layers were considered in these calculations. Two absorbing 
boundaries were considered at the beginning and at the end of the domain with a length 
of one wavelength. A friction coefficient equal to 1.0x10-2 was adopted. The source 
function for the wave generation is located at x.=.0.0m. The total simulation time was 
300.s. For the remaining model parameters, the values suggested in the COULWAVE 
model user’s manual [2] were assumed in the first attempt. 

FLUINCO used a mesh with 88700 elements and 37296 nodes. Twenty layers of 
elements were used in vertical direction, where small elements are located near the 
bottom and the free surface. Along the channel, the element sizes vary from ∆x.=.0.08m 
in the boundary to ∆x.=.0.025m around the platform. In the transversal direction, only 
one layer of elements is used, because the behavior of the flow is bi-dimensional. In the 
entrance of the domain, the wave generation condition is imposed while at the end the 
radiation condition is imposed. The velocity components are null on the bottom and the 
KBC is imposed in the free surface. The velocity component perpendicular to the 
surface is null for lateral walls (symmetry condition). As an initial condition, the 
velocity field is null and the pressure one is hydrostatic. The time step is 0.003s, a fact 
that satisfies the Courant stability condition. 

Figure 2 shows the free surface elevations in gauge 3, located downstream the 
breakwater (x=5.7m); in gauge 6, on the platform (x=13.5m); in gauge 8, in the middle 
of the upstream slope (x=15.7m); and in gauge 11, on the upstream and far from the 
breakwater (x=23m). Results obtained by numerical models are compared with the 
experimental ones presented by Dingemans [6]. 

In general, there is good agreement between numerical results and experimental ones 
in gauges 3 and 6. BOUSS3W showed a slightly higher crest in gauge 3. In gauge 6, 
FLUINCO presents slightly smooth surface deformation, while BOUSS3W differs a 
little more in oscillations with higher frequencies. In gauges 8 and 11, corresponding to 
downstream, the nonlinear effects are more significant. The deformations in gauge 8 are 
well represented by FLUINCO and COULWAVE. Although the FLUINCO results get 
closer to the experimental ones in some regions, there are difficulties in representing the 
deformations related to higher harmonics, possibly due to the lack of an appropriate 
discretization to capture the nonlinear phenomena. In this gauge, BOUSS3W shows 
discrepancies both in the shape and in the magnitude of deformations. FLUINCO has a 
better behavior in relation to the others in gauge 11. COULWAVE shows good results, 
but differs somewhat in the waves of higher frequencies. On the other hand, BOUSS3W 
does not represent the phenomenon well, with significant differences compared to other 
models. 
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   Figure 2: Free surface elevation of the 1:20 and 1:10 breakwater 

Figure 3 shows the frequency spectra obtained by models in the gauges and a 
comparison with the experimental results. The differences found in the free surface 
elevation are confirmed in Figure 3, which shows differences in the intensity of 
harmonic components, mainly in gauges located at the end of the channel. The 
numerical models adequately simulate the position of the peaks of the fundamental 
frequency and the harmonic components throughout the domain. However, there are 
some differences in the amplitude of these peaks, especially in gauges 8 and 11. The 
BOUSS3W model results do not show the presence of the third harmonic in gauge 11, 
unlike the other models. 
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Figure 3: Numerical and experimental frequency spectrum in the gauges of the breakwater 1:20 and 1:10 

Figure 4 presents the streamlines around the upstream slope of the breakwater in 
eleven instants completing one wave period obtained by FLUINCO. We can observe 
that the flow separation and the vortex do not exist at all instants, due to the mild 
inclination of the upstream slope. 
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Figure 4: Streamlines of the 1:20 and 1:10 breakwater 

3.2 Breakwater with slopes 1:2  

In this case, the length of the channel is 35m and the maximum and the minimum 
depths are 0.5m and 0.15m, respectively (See Fig. 5). In the entrance of the channel, a 
monochromatic wave is generated with a period of 2.68s, related to a wavelength of 
5.66m in the channel, and an amplitude of 0.025m.  This problem is case 6 studied by 
Ohyama et al. [7] who analyzed six different types of waves experimentally. Table 3 

x 1 3 . 5 1 4 1 4 . 5 1 5 1 5 . 5 1 6 
t=21.0s 

t=19.2s t=19.4s t=19.6s 

t=19.8s t=20.0s t=20.2s 

t=20.4s t=20.6s t=20.8s 

t=21.2s 
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shows some parameters that characterize the problem, calculated according to the linear 
theory. The Ursell number on the platform is 210, indicating the strong non-linearity in 
this region. Parameter H/h shows that breaking does not even occur on the platform. 

 

Figure 5: Geometry of the channel for the 1:2 breakwater 

 H/h kh Ur 
Channel (h = 0.5m) 0.100 0.555 14.1 
Platform (h = 0.15m) 0.355 0.294 210.0 

Table 3: Wave parameters for the 1:2 breakwater 

Table 4 shows periods, frequencies and wavelengths concerning the fundamental 
frequency and the harmonic components that occur along the wave propagation. 

 The numerical domain used by BOUSS3W is 43m long (35m + 8m on the left side 
to accommodate the sponge layer and the source function) and its discretization was 
made by linear finite elements with two nodal points. The grid spacing was ∆x.=.0.01m, 
which led to 4301 nodes. The centre of the source function is situated at x=8 m and has 
a width of one wavelength. At both ends, 2m long sponge layers were placed. A zero 
initial condition and no diffusion condition were used in this calculation. The 
calculations were performed during approximately 6000∆t, with ∆t = 0.01s, in order to 
enable the wave field to develop fully in the whole computational domain. 

The COULWAVE numerical conditions in this case were quite similar to the ones 
used in section 3.1. A higher number of points per wavelength equal to 70 was 
considered. 

A mesh with 120200 elements and 50526 nodes was used for FLUINCO in this 
simulation. The element sizes along the channel vary between dx=0.08m at the ends and 
dx=0.01m on the platform. The boundary and the initial conditions are similar to the 
ones in the previous case, and 0.002s was the time step. 

 
 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 

Period (s) 2.68 1.34 0.89 0.67 
Frequency (Hz) 0.373 0.746 1.124 1.493 
Wavelength (m) 5.66 2.42 1.22 0.70 

Table 4: Period, frequency and wavelength related to the fundamental frequency, and 2nd, 3rd, and 4th 
harmonics for the 1:2 breakwaters 

Figure 6 shows the free surface elevations in gauges 3 and 5 (gauge positions are 
indicated in Fig. 5). Numerical results are compared with the experimental ones 
presented by Ohyama et al. [7]. The FLUINCO and the COULWAVE models represent 
the surface deformation recorded in gauge 3 well, while BOUSS3W presents some 
numerical oscillations of higher frequency. The deformations of gauge 5 indicate that 
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the nonlinearity increases. In this case, FLUINCO captures the variation of the surface 
elevation more accurately. COULWAVE shows some numerical disturbances, but 
reproduces the experimental results reasonably. Moreover, BOUSS3W presents smooth 
results, which are different both in the shape and in the magnitude of the deformations. 

Figure 7 shows frequency spectra obtained in gauges 3 and 5. The fundamental and 
the harmonic waves are well represented by the models, but their amplitudes differ. The 
FLUINCO and the COULWAVE results are closer for the two gauges. There are some 
differences from those obtained by BOUSS3W, especially in gauge 5, which does not 
show the presence of the fourth harmonic and the following. 
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Figure 6: Free surface elevation for the 1:2 breakwater in gauges 3 and 5. 
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Figure 7: 1:2 Breakwater  case. Frequency spectra in gauges 3 and 5. 

Streamlines during one wave period obtained by FLUINCO are presented in Fig. 8. 
Unlike the previous case, a vortex, located between the upstream slope and the bottom, 
occurred during part of the wave period. 
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Figure 8: Streamlines of the 1:2 breakwater 

4 CONCLUSIONS 

Results of three numerical models (FLUINCO, COULWAVE and BOUSS3W) for 
two cases of trapezoidal breakwaters with different slopes are compared in this paper. 
While FLUINCO is a model based on the direct integration of the Navier-Stokes 
equations, COULWAVE and BOUSS3W solve the extended Boussinesq equations. 

The first case study deals with upstream and downstream slopes of 1:20 and 1:10, 
respectively. Its results obtained by the models were compared with Dingemans’ 
experimental data [6]. A comparison of the surface elevations and the energy spectrum 
for some gauges along the channel showed that the models provided good results. 
Although the FLUINCO results have been somewhat smoothed, they were closer to the 
experimental ones, including the ones in the gauges placed on the downstream, where 
nonlinear effects are more significant. COULWAVE proved to be a robust model, 
representing the surface deformation adequately even in zones with strong nonlinearity. 
Moreover, the BOUSS3W model represented the deformations in the upstream of the 
breakwater well, but there were some differences in the downstream, where high order 
harmonics were not captured. Streamlines over a wave period obtained by FLUINCO 
show that there is no flow separation in this case. 

The analysis of the 1:2 breakwater slope case showed a strong influence of nonlinear 
effects on the results of the surface elevation and the energy spectrum. The numerical 
results were compared with experimental ones presented by Ohyama et al [7]. The 
vertical velocity field obtained by FLUINCO showed that a vortex of non-turbulent 
origin was formed in the flow. FLUINCO obtained results closer to the experimental 
ones, including the ones in the downstream of the breakwater, where the nonlinearity 
effects are more significant. COULWAVE presented a good behavior, with some 
numerical oscillations of higher frequency in the downstream regions. The numerical 
disturbance presented by BOUSS3W is intensified in the downstream zones, where the 
shape of the surface deformations was not adequately represented. 

The two cases showed that FLUINCO captures the nonlinear effects of the flow more 
accurately, due to the fact that this model considers the influence of the vertical 
circulation in the flow, unlike the Boussinesq models (COULWAVE and BOUSS3W). 
They also indicated better robustness of COULWAVE compared with BOUSS3W, 
possibly due to the higher order nonlinear terms included in the Boussinesq equations. 

t=20.70s t=20.97s t=21.24s 

t=21.50s t=21.77s 
 

t=22.04s 

t=22.31s t=22.58s t=22.84s 

t=23.11s t=23.38s 
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On the other hand, FLUINCO consumes more computational time that justifies the use 
of Boussinesq models in which the vertical movement does not influence the flow 
behavior significantly. 
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