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Abstract. The filtered fluid dynamic equations are discretized in space by a high-order
spectral difference(SD) method coupled with large eddy simulation (LES) approach. The
subgrid-scale stress tensor is modelled by the wall-adapting local eddy-viscosity model
(WALE). We solve the unsteady equations by advancing in time using a second-order back-
ward difference formula (BDF2). The nonlinear algebraic system arising from the time
discretization is solved with the nonlinear lower-upper symmetric Gauss-Seidel (LU-SGS)
algorithm. As test cases, the 2D turbulent flow past a square cylinder at Re = 2.2 × 104

and the 3D turbulent flow in a muffler at Re = 4.64×104 have been computed and the re-
sults compared with available solutions and obtained experimental data. A good agreement
between the results is observed.
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1 INTRODUCTION

Spatially high-order accurate compact schemes are now well established as accurate
methods to solve a variety of flow problems. In Computational Fluid Dynamics (CFD),
they are used for Direct Numerical Simulation (DNS), Large Eddy Simulation (LES),
Computational Aeroacoustics (CAA) etc., where the accurate resolution of small scales is
required. Moreover, since CFD is increasingly used as an industrial design and analysis
tool, high-order accuracy must be achieved on unstructured grids which are required for ef-
ficient meshing. These needs have been the driving force for the development of higher or-
der schemes for unstructured meshes such as the Discontinuous Galerkin (DG) method,1,2

the Spectral Volume (SV) method3,4 and the Spectral Difference (SD) method.5,6 All
these methods use piecewise continuous functions as the solution approximation space.
They are capable of achieving high-order accuracy on unstructured grids and they have
a compact stencil, which makes them easily parallelizable.

The SD method has an important advantage over the DG and SV methods, that no
integrals have to be evaluated to compute the residuals, thus avoiding the need for costly
high-order accurate quadrature formulas. Recently, there has been research on unifying
several of the popular methods including the DG method, the SV method and the SD
method with a technique that does not require the evaluation of the integral.7,8

Although spatially high-order accurate numerical schemes guarantee the accurate res-
olution of small scales, their application for the simulation of general turbulent flows
implies that particular attention has still to be paid to subgrid models. In this frame-
work, we couple a high-order SD scheme on unstructured quadrilateral grids with the
local eddy-viscosity (WALE) model9 to carry out large eddy simulations.

The accuracy and the reliability of the of the new coupling between the SD method and
the WALE model are tested by solving the 2D ”turbulent” flow around a square cylinder
at Re = 2.2 × 104 with a third-order SD scheme and the 3D turbulent flow in a muffler
at Re = 4.64× 104 with a second-order scheme. The results are compared with LES and
experiments reported in literature.

Usually, explicit temporal discretizations such as multi-stage TVD (total variation
diminishing) RungeKutta schemes1 are used to advance the solution in time. In general,
explicit schemes and their boundary conditions are easy to implement, vectorize and
parallelize, and require only limited memory storage. However, for large-scale simulations
and especially for high-order solutions, the rate of convergence slows down dramatically,
resulting in inefficient solution techniques. In addition, the solver must also be able to deal
with the geometrical stiffness imposed by the Navier-Stokes grids where high-aspect ratios
occur near walls. In the case of compressible solvers there is an additional stiffness when
solving for low speed flows caused by the disparate eigenvalues of the system. Therefore,
to exploit the potential of high-order methods efficient solvers are needed. In order to
speed up convergence, a multigrid strategy and/or an implicit temporal discretization
is required. Implicit schemes can advance the solution with significantly larger time
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steps compared to explicit methods. However, they may be more expensive than explicit
schemes if the algebraic solver employed is not efficient.12,24 In the present study, the
unsteady filtered fluid dynamic equations are solved by advancing in time using a second-
order backward difference formula (BDF2). The nonlinear algebraic systems arising from
the time discretization is then solved with the nonlinear lower-upper symmetric Gauss-
Seidel (LU-SGS) algorithm.10–13

The remainder of this article is organized as follows. A brief summary of the filtered
fluid dynamic equation for a compressible flow and the description of the WALE model
are given in Section 2. Section 3 is devoted to the description of the SD method and the
treatment of the diffusive terms the second approach of Bassi and Rebay.14 In the same
section the coupling of the SD method and the WALE model through a new definition
of the grid filter width is given. The nonlinear LU-SGS algorithm combined with the
BDF2 is described in Section 4. Section 5 deals with the numerical results, before finally
drawing the conclusions in Section 6.

2 GOVERNING EQUATIONS FOR LARGE EDDY SIMULATION

In this section the system of the LES fluid dynamic equations for a compressible flow
are presented. The three physical conservation laws for a general Newtonian fluid, i.e.
the continuity, the momentum and energy equations, are introduced using the following
notation: ρ for the mass density, ~u ∈ R

dim for the velocity vector in a physical space with
dim dimensions, P for the static pressure and E for the specific total energy which is
related to the pressure and the velocity vector field by

E =
1

γ − 1

P

ρ
+

|~u|2

2
, (1)

where γ is the constant ratio of specific heats and it is 1.4 for air.
Define a vector w of all the filtered conservative variables, i.e.

w =




ρ

ρ~̃u

ρẼ


 , (2)

where the symbols (·) and (̃·) represent respectively the spatially filtered field and the
Favre filtered field defined as ~̃u = ρ~u/ρ. The system of the filtered fluid dynamic equations
for a compressible flow, written in divergence form and equipped with suitable initial-
boundary conditions, is

∂w

∂t
+ ~∇ ·

(
~fC (w) −~fD

(
w, ~∇w

))
=

∂w

∂t
+ ~∇ ·~f = 0, (3)

~fC (w) = [fC , gC ,hC ]T and ~fD

(
w, ~∇w

)
= [fD, gD,hD]T represent the convective and the

diffusive fluxes, respectively. In a general 3D (dim = 3) Cartesian space, ~x = [x1, x2, x3]
T ,
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the components of these fluxes are given by

fC =




ρũ1

ρũ2
1 + P

ρũ1ũ2

ρũ1ũ3

ũ1

(
ρẼ + P

)




, gC =




ρũ2

ρũ1ũ2

ρũ2
2 + P

ρũ2ũ3

ũ2

(
ρẼ + P

)




,hC =




ρũ3

ρũ1ũ3

ρũ2ũ3

ρũ2
3 + P

ũ3

(
ρẼ + P

)




,

fD =




0
σ̃11 + τ̃ sgs

11

σ̃21 + τ̃ sgs
21

σ̃31 + τ̃ sgs
31

σ̃11ũ1 + σ̃21ũ2 + σ̃31ũ3 + cP
µ

Pr
∂T̃
∂x1

+ qsgs
1




,

gD =




0
σ̃12 + τ̃ sgs

12

σ̃22 + τ̃ sgs
22

σ̃32 + τ̃ sgs
32

σ̃12ũ1 + σ̃22ũ2 + σ̃32ũ3 + cP
µ

Pr
∂T̃
∂x2

+ qsgs
2




,

hD =




0
σ̃13 + τ̃ sgs

13

σ̃23 + τ̃ sgs
23

σ̃33 + τ̃ sgs
33

σ̃13ũ1 + σ̃23ũ2 + σ̃33ũ3 + cP
µ

Pr
∂T̃
∂x3

+ qsgs
3




,

where cP , µ, Pr and T represent respectively the specific heat capacity at constant pres-
sure, the dynamic viscosity, the Prandtl number and the temperature of the fluid. More-
over, σij represents the ij−component of the resolved viscous stress tensor defined as

σij = 2µ

(
Sij −

δij

3
Smm

)
i, j = 1, . . . , dim, (4)

Sij

(
~̃u
)

= S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
i, j = 1, . . . , dim, (5)

where δij is the Kronecker Delta function.
From the definitions of the fluxes components it is seen that both the momentum and

the energy equations differ from the classical fluid dynamic equations only for two terms
which take into account the contributions from the unresolved scales. These contributions,
represented by the specific subgrid-scale stress tensor τ sgs

ij and by the subgrid heat-flux
vector defined qsgs

i , appear when the spatial filter is applied to the convective terms and
they are defined as follows

τ sgs
ij = ρ (ũiuj − ũiũj) i, j = 1, . . . , dim, (6)
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qsgs
i = cPρ

(
T̃ ui − T̃ ũi

)
i = 1, . . . , dim. (7)

The interactions of τ sgs
ij and qsgs

i with the resolved scales have to be modeled through a
subgrid-scale model because they cannot be determined using only the resolved flow field
w.

2.1 The wall-adapted local eddy-viscosity model

In the previous section, it was seen that the smaller scales and their interaction with the
resolved scales have to be modeled through the subgrid-scale term τ sgs

ij . The tensor τ sgs
ij

can be modeled at different levels of complexity. The most common approach is based on
the eddy-viscosity concept in which one assumes that the residual stress is proportional
to the filtered rate of strain, which is defined as follows:

τ sgs
ij − τ sgs

kk δij = −2 ρ νt

(
S̃ij −

δij

3
S̃kk

)
= −2 ρ νt S̃

D
ij , (8)

In the wall-adapted local eddy-viscosity (WALE) proposed by Nicoud and Ducros,9 it is
assumed that the eddy-viscosity νt is proportional to the square of the length scale of
the filter and the filtered local rate of strain. Although the model was originally been
developed for incompressible flows, it can also be used for variable density flows by giving
the formulation as follows

νt = (C∆)2
∣∣∣S̃
∣∣∣ . (9)

Here
∣∣∣S̃
∣∣∣ is defined as

∣∣∣S̃
∣∣∣ =

[
S̃d

ij S̃d
ij

]3/2

[
S̃ij S̃ij

]5/2

+
[
S̃d

ij S̃d
ij

]5/4
, (10)

where S̃d
ij is given by

S̃d
ij =

1

2

(
g̃2

ij + g̃2
ji

)
−

δij

3
g̃2

kk, with g̃2
ij =

∂ũi

∂xk

∂ũk

∂xj
. (11)

Note that in Eq. (9) ∆, i.e. the width of the grid filter, is an unknown function. Often
the grid filter width is taken proportional to the smallest resolvable length scale of the
discretization. In the present work, the definition of the grid filter function is given in
Section 3.1, where the spectral difference method is discussed.

The WALE model is specifically designed to return the correct wall-asymptotic y+3−variation
of the subgrid-scale viscosity νt

9 and the constant model coefficient C can be adjusted
so that the correct amount of subgrid dissipation is obtained. For the subgrid heat-flux
vector qsgs

i , if an eddy diffusivity model is used, the following expression is obtained

qsgs
i = Cpρ

(
T̃ ui − T̃ ũi

)
= −ρ

νtCp

Prt

∂T̃

∂xi

, (12)
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where the value of the turbulent Prandtl number Prt is set to 0.72 and the eddy-viscosity
is computed by Eq. (9).

3 SPECTRAL DIFFERENCE METHOD

Consider a problem governed by the general system of conservation laws given by Eq.
(3) and valid on a domain V for the filtered conservative variable vector w defined in Eq.
(2). The domain is divided into N non-overlapping cells, with cell index i. On each cell,

a 3D mapped coordinate system ~ξ = [ξ1, ξ2, ξ3]
T is introduced, with the transformation to

Cartesian coordinates defined by

~xi =




x1,i

x2,i

x3,i


 =




x1,i (ξ1, ξ2, ξ3)
x2,i (ξ1, ξ2, ξ3)
x3,i (ξ1, ξ2, ξ3)


 = ~xi

(
~ξ
)

. (13)

The Jacobian matrix for this transformation is denoted as
~~J i and the Jacobian determi-

nant as Ji. The fluxes projected in the mapped coordinate system ~f
~ξ are related to the

Cartesian flux components ~f for the cell i by

~f
~ξ

i =




f
~ξ
i

g
~ξ
i

h
~ξ
i


 = Ji

~~J−1
i




fi
gi

hi


 = Ji

~~J−1
i

~fi. (14)

Therefore, the governing equations (3) can be written in the mapped coordinate system
as

∂ (Jiw)

∂t
≡

∂w
~ξ
i

∂t
= −

∂f
~ξ
i

∂ξ1
−

∂g
~ξ
i

∂ξ2
−

∂h
~ξ
i

∂ξ3
= −~∇

~ξ ·~f
~ξ

i , (15)

with w
~ξ
i ≡ Jiw the conservative variables in the mapped coordinate system. For a dim-

dimensional (p + 1)-th order scheme, N s (p, dim) solution points with index j are intro-

duced at positions ~ξs
j , supporting a set of Lagrangian basis polynomials Ls

j

(
~ξ
)

of degree

p. Based on these basis polynomials, one can approximate the solution in cell i with a
p-th order polynomial as follows

wi ≈ Wi

(
~ξ
)

=

Ns∑

j=1

Wi,jL
s
j

(
~ξ
)

, (16)

where the conservative variables at the solution points Wi,j denote the solution variables
of the SD method. The evolution of these variables is governed by Eq. (15) evaluated at
the solution points.

To estimate the divergence of the mapped fluxes ~∇
~ξ ·~f

~ξ

i at the solution points, a set of

Nf flux points with index l and at positions ~ξf
l , supporting a polynomial of degree p + 1,
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is introduced. The evolution of the mapped flux vector ~f
~ξ

in cell i is then approximated

by a flux polynomial ~F
~ξ

i , which is obtained by reconstructing the solution variables at the

flux points and evaluating the fluxes ~F
~ξ

i,l at these points. To ensure a coupling between
the cells, a number of flux points need to lie at the faces or the corners of the cell.
In order to maintain conservation at a cell level, the flux component normal to a face
must be continuous between two neighbouring cells. Since the solution at a face is in
general not continuous, this requires the introduction of Riemann solvers at those points.
Two different approaches were discussed in Wang et al.5 The first approach involves the
definition of multidimensional Riemann solvers, while the second one uses multiple 1D
Riemann solvers. One can find more information in the references mentioned above. The
flux polynomial is then defined by

~F
~ξ

i

(
~ξ
)

=

Nf∑

l=1

~F
~ξ

i,l L
f
l

(
~ξ
)

, (17)

where the Lf
l

(
~ξ
)

are the Lagrangian basis polynomials associated with the flux points.

Taking the divergence of the flux polynomial ~∇
~ξ · ~F

~ξ

i in the solution points results in the
following modified form of (15), describing the evolution of the conservative variables in
the solution points:

dWi,j

dt
= − ~∇ · ~Fi

∣∣∣
j
= −

1

Ji,j

~∇
~ξ · ~F

~ξ

i

∣∣∣∣
j

= Ri,j, (18)

where Ri,j is the SD residual associated to Wi,j. This is a system of ordinary differential
equations in time for the solution unknowns Wi,j, which can be solved numerically using
any classical method for such system.

In the present paper, only meshes with quadrilateral (2D) and hexahedral (3D) are
considered. For such cells, different sets of flux points are used for the different components

of the mapped flux vector. For the f
~ξ-component, a set of flux points that supports a

polynomial of degree p + 1 in ξ1 and of degree p in ξ2 and ξ3 is defined. These flux

points are labeled the ‘ξ1-flux points’ in the remainder of this paper. For the g
~ξ- and

h
~ξ-components, ‘ξ2-’ and ‘ξ3-flux points’ are introduced analogously. The solution and

flux point distributions for third-order accurate quadrilateral SD cells are illustrated in
Fig. 1.

In Van den Abeele et al.15 it was shown that the distribution of the solution points
has very little influence on the properties of the SD schemes, and in fact, for linear
problems, the different distributions in the figures lead to identical results. It is easily
understood that the rightmost distributions in the figures allow for a significant reduction
in the solution reconstruction cost. Notice that for the third-order scheme, there is a free
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(a) General.
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3
    

(b) Locally 1D.
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(c) Most solution
points at flux points,
symmetrical.

Figure 1: Third-order quadrilateral SD cells. Solution points (◦) and ξ1- (H) and ξ2-flux
points (N).

parameter α3 for the flux point distributions. In general, the flux points are not uniquely
defined for schemes with p > 1. The choice of the flux point distribution was shown to
have an important influence on the stability and accuracy of the SD schemes in Van den
Abeele et al.15 In Huynh et al.,7 it was proven that for quadrilateral and hexahedral cells,
tensor product flux point distributions based on a 1D flux point distribution consisting
of the end points and the Legendre-Gauss quadrature points, lead to stable schemes for
arbitrary values of p. Consequently, in the present paper, symmetrical distributions with
most solution points at flux points, shown in Fig. 1c, are used, where the flux point
distribution is defined using Legendre-Gauss quadrature points. Finally, since only one
component of the projected flux vectors is reconstructed in each set of flux points, a
traditional 1D Riemann flux, like the Rusanov or the Roe flux, suffices for the treatment
of the convective fluxes at face flux points in quadrilateral and hexahedral SD cells.

In the present paper the second approach of Bassi and Rebay (BR2)14 is considered for

the diffusive terms treatment. For the evaluation of the diffusive flux vector~fD

(
w, ~∇w

)
,

the gradients of the conservative variables must be available at the flux points. Defining
the vectors ~J ξ1

i , ~J ξ2
i and ~J ξ3

i as

Ji
~~J−1

i =
[

~J ξ1
i , ~J ξ2

i , ~J ξ3
i

]T
, (19)

a gradient approximation polynomial ~Φi (ξ) is obtained by computing the values at the
solution points as follows:

~∇w
∣∣∣
i,j

≈
1

Ji,j

[
∂W̆i

~J ξ1
i

∂ξ1

+
∂W̆i

~J ξ2
i

∂ξ2

+
∂W̆i

~J ξ3
i

∂ξ3

]

j

= ~Φi,j, (20)

where W̆i is a polynomial of degree p + 1, defined by its values at the flux points. In an
internal flux point, this is just the value of the polynomial Wi. In a face flux point, it is
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equal to an average value Ŵ, of the two available values WL and WR, which is defined
for the second approach of Bassi and Rebay as

Ŵ =
WL + WR

2
. (21)

The gradients in cell i are then approximated by ~Φi

(
~ξ
)
, given by

~∇w
∣∣∣
i
≈ ~Φi

(
~ξ
)

=

Ns∑

j=1

~Φi,j Ls
j

(
~ξ
)

. (22)

The diffusive flux vector is approximated as ~fD

(
Wi, ~Φi

)
in an internal flux point. At a

face, two values, ~ΦL and ~ΦR, of ~Φ are available. An averaged value ~̂Φ is then used and
it is defined as

~̂Φ =
~∇WL + ~∇WR

2
+ ϕ

~ΛL + ~ΛR

2
, (23)

where ϕ defines the amount of damping added to the gradients. ϕ is always equal to
one in the present work. The lifting operators ~ΛL and ~ΛR associated to a face can be
interpreted as corrections to the gradients of the solution polynomials in the neighbouring
cells. These lifting operators are polynomials defined in the neighbouring cells by their
values at the solution points:

~ΛL(R),j =
1

JL(R),j

[
~∇

~ξ δWL(R)

]
j
. (24)

In this expression, δW is a polynomial of degree p + 1, defined by its values at the flux
points:

δWL(R),l =





(WR,l − WL,l)

∣∣∣∣
(
J
~~J−1

)T
~1

~ξ
n

∣∣∣∣
L(R),l

~1n l ∈ curr. face

0 elsewise,

(25)

where ~1
~ξ
n is the unit normal to the face in the mapped coordinate system. The normal

component of the diffusive flux vector is thus evaluated as ~fD

(
0.5 (WL + WR) , ~̂Φ

)
· ~1n

in a face flux point, where the unit normal vector in the physical space ~1n to a face points
from the left (L) to the right (R) neighbouring cell.

Unlike the Local Spectral Difference approach,13,14 the BR2 approach is fully compact,
as only the immediate neighbors are required for the computation of the residuals in a
cell.
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3.1 Grid filter width for the subgrid-scale model

In Section 2.1 it is seen that in the WALE model the grid filter width ∆ is used to
compute the turbulent eddy-viscosity, i.e. Eq. (9). In general ∆ is an unknown function
and it has to be defined to have a closed model. Often, the grid filter width is taken
proportional to the smallest resolvable length scale of the discretization and for a general
cell with index i is usually approximated by

∆i =

(
dim∏

k=1

hk

)1/dim

, (26)

where hk is the size of the cell in the k−direction. However, at the face flux points, two
values of ∆ are available, labeled ∆L and ∆R. Consequently, an averaged value for the
filter width is generally used,

∆̂i =
∆L + ∆R

2
. (27)

For classical finite volume (FV) methods, Eq. (27) uniquely defines the grid filter width
because for these schemes the flux points always lie at the cell face. However, the same
reasoning applied to a general SD method implies a natural formulation of the grid filter
width based on the Jacobian determinant of the transformation defined by Eq. (13).
However, since in the SD scheme each cell has interior solution points and a high-order
polynomial approximation occurs in the cell, it is natural to choose the filter width de-
pending on the order of the polynomial. Therefore, in the definition of the grid filter
width, the order of the polynomial is taken into account through the division of the Ja-
cobian determinant by the number of solution points, i.e. N s (p, dim). Consequently, for
each cell with index i and each flux points with index l and positions ξ

f
l , we propose the

following new definition of filter width

∆i,l =

[
1

N s
det

(
~~J i

∣∣∣
ξ

f

l

)]1/dim

=

(
Ji,l

N s

)1/dim

. (28)

Eq. (28) uniquely defines the filter width for the internal flux points but for the face
flux points two values of the Jacobians determinant are available, labeled JL,l and JR,l.
Consequently, an averaged value is again used, i.e.

∆̂i,l =




det

(
~~JL

∣∣∣
ξ

f
l

)
+ det

(
~~JR

∣∣∣
ξ

f
l

)

2 N s




1/dim

=

(
JL,l + JR,l

2 N s

)1/dim

(29)

Notice that with this approach, the cell filter width is not constant in one cell, but
it varies because the Jacobian matrix is a function of the positions of the flux points.
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Moreover, for a given mesh, the number of solution points depends on the order of the SD
scheme, so that grid filter width vary by varying the order of the scheme. The proposed
approach is valid for high-order approaches and it is consistent because the filter width
is a function of the the polynomial order through the number of solution point. In fact,
the grid filter width decreases by increasing the polynomial order of the approximation.

4 NONLINEAR LOWER-UPPER SYMMETRIC GAUSS-SEIDEL METHOD

Applying the SD method to a set of convection-diffusion equations results in a semi-
discretization in space of the form (18). This expression can be discretized in time using
any classical method. If an explicit time stepping algorithm, like a Runge-Kutta method,
is used, then, because of the Courant-Friedrichs-Lewy stability condition for the convective
terms, there is a maximum value, proportional to the cell size and inversely proportional
to the maximum wave propagation velocity, for the associated time step ∆t. This stability
limit is often too restrictive, especially for high-order schemes and Navier-Stokes grids.
Implicit time-integration schemes can be used to deal with these problems because they
do not suffer from such a stability limit. In the present work, the second-order backward
difference formula (BDF2) with variable time-step,

1 + 2τn

1 + τn

W|tn+1
− (1 + τn) W|tn +

τ 2
n

1 + τn

W|tn−1
= ∆tn R|tn+1

, (30)

is employed to integrate, in time, the system of ODEs which arises from the spatial
discretization. In Eq. (30) n is the index of the time iteration, ∆tn = tn+1 − tn and
τn = ∆tn

∆tn−1
. The BDF2 is A−stable.16 This property is very important to solve systems of

stiff ODEs which often arise from the discretization of the fluid dynamic equations with
a spatially high-order numerical scheme.

Expression (30) is a nonlinear algebraic system, which has to be solved each time
iteration to find the solution at the next iteration tn+1 starting from the two previous
time iterations tn and tn−1. Writing (30) for one cell, with the current cell denoted by
the subscript cc, the neighbouring cells that contribute to its residual denoted by the
subscript nb, omitting the solution point index j, and linearizing the residual about time
iteration tn, one obtains

∆Wcc

∆tn
− β1

(
∂Rcc

∂Wcc

∣∣∣∣
tn

∆Wcc +
∑

nb

∂Rcc

∂Wnb

∣∣∣∣
tn

∆Wnb

)
=

β2

(
Wcc|tn − Wcc|tn−1

)
+ β1 Rcc|tn , (31)

with ∆W = W|tn+1
− W|tn , β1 = 1+τn

1+2τn
and β2 = τ2

n

∆tn(1+2τn)
. Applying a (symmetric)
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Gauss-Seidel (SGS) algorithm to solve this linear algebraic system results in

[
−β1

∂Rcc

∂Wcc

∣∣∣∣
tn

+
I

∆tn

]
∆Wm+1

cc = β1

(
Rcc|tn +

∑

nb

∂Rcc

∂Wnb

∣∣∣∣
tn

∆W∗
nb

)

+ β2

(
Wcc|tn − Wcc|tn−1

)
, (32)

where the approximation of the linear system solution at the iteration m is written as
∆Wm, and the superscript ∗ signifies the latest available solution.

To avoid the storage of the off-diagonal block matrices ∂Rcc

∂Wnb

∣∣∣
tn

, expression (32) is further

manipulated to obtain

[
−β1

∂Rcc

∂Wcc

∣∣∣∣
tn

+
I

∆tn

]
∆Wm+1

cc = β1

(
R∗

cc −
∂Rcc

∂Wcc

∣∣∣∣
tn

∆W∗
cc

)

+ β2

(
Wcc|tn − Wcc|tn−1

)
. (33)

Defining δWm+1
cc = ∆Wm+1

cc −∆W∗
cc = Wm+1

cc −W∗
cc, the final expression of the nonlinear

LU-SGS algorithm for the BDF2 with variable time step is then:

[
−β1

∂Rcc

∂Wcc

∣∣∣∣
tn

+
I

∆tn

]
δWm+1

cc = β1R
∗
cc + β2

(
Wcc|tn − Wcc|tn−1

)
−

∆W∗
cc

∆tn
. (34)

The inverse of the small Jacobian matrices in the left hand side of this expression can be
computed using a LU decomposition at the beginning of each time iteration, which makes
the solution of the small linear algebraic systems much more efficient during subsequent
SGS sweeps. Note that this LU-SGS algorithm acts directly on the nonlinear algebraic
system to be solved, which is the right hand side of expression (34). For this reason the
algorithm is called nonlinear LU-SGS algorithm.

Since only the diagonal block Jacobians should be stored, the total number of real
variables N needed for these Jacobians, in 3D, is

N
[
(p + 1)3 × # physical variables

]2
. (35)

From expression (35), it is clear that the nonlinear LU-SGS method requires significantly
less memory than the classical method that use the full Jacobian matrix (for instance the
GMRES algorithm17), but the required amount still increases with p to the power six.

5 NUMERICAL RESULTS

The new coupling between the SD method and LES is first tested by solving the 2D
”turbulent” flow past a square cylinder at Re = 2.2 × 104. The obtained results are
compared with the LES and experimental results reported in Bouris et al.22 Afterwards,
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the proposed numerical approach is applied to the 3D turbulent flow in a muffler at
Re = 4.64 × 104 and the statistics are compared with those obtained from experiments
and other numerical simulations.

The nonlinear system (34) is solved with multiple cell-wise symmetric forward and
backward sweeps with a prescribed tolerance of 10−6 on the change of the L2 norm of the
solution variation δW

(m+1)
cc and/or a maximum number of 100 symmetric Gauss-Seidel

sweeps. The meshes were created using Gmsh23 which allows to have a second-order
(p = 2) polynomial approximation of the boundary elements.

5.1 2D flow past a square cylinder

The purpose of this test case is to evaluate the quality of the proposed numerical
method by comparing the mean flow field and the turbulent kinetic energy results with
some reference solution. In the literature, 2D and 3D large eddy simulations of the flow
past a square cylinder have been performed, for instance see Murakami et al.18 and
Breuer et al.21 Moreover, Bouris et al.22 have also performed 2D LES computations and
compared the results with the experimental measurements of Lyn19 and Durao et al.20 It
was demonstrated that the characteristic of this type of flow is its quasi-two-dimensional
character and the presence of periodic vortex shedding from the front corners of the
square rod which introduces a low-frequency variation of the velocity field behind the rod
in addition to the high-frequency turbulence fluctuations. It has been stated in the past22

that 2D LES calculations are clearly inferior to 3D ones since certain important features
of 3D turbulence are not resolved. The three dimensionality of turbulence cannot be
questioned, however, in the present paper, we want to show that the importance of detailed
simulation of the quasi-two-dimensional mechanisms can be achieved by performing a 2D
LES with the new combination of SD and subgrid-scale model.

In Fig. 2, the configuration of the test case is illustrated. The cylinder is placed on
the length axis (y = 0) of the computational domain. At the left-hand-side boundary
(the inflow), the flow is prescribed to be uniform with non-fluctuating velocity profiles.
The same conditions are applied to the upper boundary and to the lower boundary. At
the right-hand-side boundary (the outflow), only the pressure is prescribed. The Mach
number is set to 0.05, so that the flow is almost incompressible. The Reynolds number
based on the free-stream velocity | ~u∞ | and height of the square cylinder h is 2.2×104. A
mesh with 12622 quadrilateral elements is used. The flow is computed using third-order
(p = 2) SD schemes with and without subgrid scale model. The time-step used for the
computation starts from 0.00001 and increases linearly up to 0.0020. In the present test
case, the 2D LES calculation with a second finite volume scheme and the Smagorisky-Lilly
model of Bouris et al.22 will be used as a reference 2D LES solution. In the reference
solution, a mesh with 350×300 points is employed. Therefore, the total number of degrees
of freedom (DOFs) of the present SD calculation is practically the same as the number
of DOFs used in Bouris et al.22

Table 1 shows the prediction of the dominant vortex shedding frequency in non-
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Far field

Far field

OutletInlet

x2

x1 = −5.5 h x1 = 15.5 h

x1

h

x2 = 6 h

Figure 2: Configuration of the 2D square cylinder test case.

dimensional form reported in literature22 as well as the results from the present simu-
lations. In this table, the abbreviations (k − ε)∗, RSE1 and RSE2 stand respectively for
k−ε model with 2 layers, Reynolds stress equation with wall function and Reynolds stress
equation with two layers (see Bouris et al.22 and the references therein.). The results with
subgrid scale model are in good agreement with the experimental measurements while the
solution without subgrid-scale model underestimates both the Strouhal number and the
time averaged drag coefficient 〈cd〉.

Table 1: Numerical calculation of the Strouhal number and the mean drag coefficient
from various turbulence simulations of the flow past a square cylinder.

(k − ε)∗22 RSE122 RSE222 2D LES22 Present Present Exps.19 ,20

SD no model SD-LES

St 0.124 0.136 0.159 0.134 0.121 0.133 0.132± 0.004
0.139

〈cd〉 1.179 2.15 2.43 2.18 1.98 2.21 2.05-2.23

Time averaged results are obtained by integrating the data over approximately 20
shedding cycles and the mean center-line velocity is presented in Fig. 3. Although the
SD scheme without subgrid-scale model overpredicts the value of the reverse velocity, it
already gives a solution which has somewhat the same accuracy as does the 2D LES of
Bouris et al.22 Moreover, it can be clearly seen that the modeling of the subgrid-scale
stress tensor improves the accuracy of the results. In fact, a good agreement between
the predicted results and experimental data of Durao et al.19 throughout the comparison
domain shows that the quality of a high-order SD method increases when it is coupled with
large eddy simulation. In the other parts of the comparison domain the method without
subgrid-scale model is in a good agreement with LES of Bouris et al.22 Note that, the
SD-LES method captures the peak of the mean stream-wise velocity considerably better
than the others.

Figure 4 shows the resolved total turbulent kinetic energy. One can compare the
results with the experimental data and see that the SD method with subgrid scale model
undershoot the peak experimental value somewhat less than the 2D LES of Bouris et al.22
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Figure 3: Time averaged velocity 〈ũ1〉
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along the center-line behind the square cylinder.
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Figure 4: Total fluctuation energy ktot

|~u∞|2
along the center-line behind the square cylinder.

and predicts the results well elsewhere. As it is observed, the present approach without
subgrid scale model overshoots the peak experimental value less than does the 2D LES
of Bouris et al.,22 whereas throughout most of the domain both results are on the top of
each other.

5.2 3D flow in a muffler

Mufflers are commonly used in a wide variety of applications. Industrial flow ducts as
well as internal combustion engines frequently make use of silencing elements to attenuate
the noise levels carried by the fluids and radiated to the outside atmosphere by the
exhausts. Restrictive environmental legislation requires that silencer designers use high
performance and reliable techniques. Various techniques are currently available for the
modeling and testing of duct mufflers. Empirical, analytical and numerical techniques
have been used and proved reliable under controlled conditions. Design of a complete
muffler system is, usually, a very complex task. Each element is selected by considering its
particular performance, cost and its interaction effects on the overall system performance
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and reliability.
The main purpose of this work is to evaluate the accuracy and the reliability of the LES

solver, performing the simulation of a confined flow in an industrial geometry. Therefore,
the 3D turbulent flow in a muffler is considered as a test case. The results are compared
with the experimental results obtained at the Department of Environmental and Applied
Fluid Dynamics of the von Karman Institute for Fluid Dynamics, Belgium.

d

5 d 7.5 d 5 d 4.75 d

0
.6

2
5
d

0
.6

2
5
d

Figure 5: Dimensions of the 3D muffler.

In Fig. 5, the geometry of the muffler its characteristic dimensions are illustrated. This
configuration was selected because is representative of the physical mechanisms involved in
a generic muffler. At the inlet, according to a ”top-hat” velocity profile obtained from the
experiments, total pressure, total temperature and direction of the flow are specified. At
the the outlet only the pressure is prescribed. The Reynolds number based on maximum
velocity at the inlet | ~uinlet |= umax and the diameter of the inlet/outlet d is 4.64 × 104.
In accordance to the experiments, the Mach number is set to 0.05. A very coarse grid
with 125072 hexahedral elements and with a quadratic geometrical mapping is used (see
Fig. 6). The flow is computed using second-order (p = 1) SD schemes with subgrid scale
model. Therefore, the number of DOFs is approximately one million. The time-step used
for the computation starts from 0.00001 and increases linearly up to 0.001.

(a) x1-x2 Plane (b) x2-x3 Plane.

Figure 6: Plane views of the grid used for the 3D LES of the muffler.23

The computation is validated on the center plane of the expansion coinciding with the
center planes of the inlet and outlet pipes by means of particle image velocimetry (PIV).
The laser sheet was generated by a 200 mJ Nd-YAG double-pulsed laser passing through
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a spherical and cylindrical lens. A smoke generator was used to see the flow with fine oil
droplets (1 µm). A digital CCD camera was used (PCO Sensicam, resolution - 1280x1024)
to record the images with a region of interest limited to 1280x832. The pulse separation
of the between the images of the PIV couple correspond to a maximum displacement of 6
pixels. In order to keep a high spatial resolution over the measurement domain, the mea-
surements are divided into 3 zones and with a field of view of 100x55mm2 with a resolution
of 12 pixels per millimeter. All of these measurements are taken on the symmetrical center
plane of the muffler. It should be noted that the circular nature of the geometry acts as
a lens causing a change in magnification which prevents from capturing images close to
the wall. It is found that outside 1cm from the wall the magnification effect is negligible
and as the mean flow direction is in the direction of constant magnification (i.e along the
height of the cylinder) no corrections are deemed necessary. For each region, 1,000 image
pairs have been acquired and pre-processed with the home-made cross-correlation algo-
rithm WIDIM (Window Displacement Iterative Multigrid). This program is based on an
iterative multigrid predictor-corrector method, handling the window distortion, for better
resolution of shear flows, and the sub-pixel window displacement, to limit pixel-locking.
The predictor-corrector method is then validated for each grid size if the signal-to-noise
(SN) ratio is above 1.5.25Mean quantities are then computed from the PIV data and
profiles are extracted to compare with the LES.

In Fig. 7, the non-dimensional mean velocity profile in the axial direction 〈ũ3〉
umax

is shown
for three different sections in the expansion chamber. In this figure, the PIV data and the
LES solution obtained with FluentTMare also plotted for comparison. Moreover, in Fig.

8, the non-dimensional Reynolds stress
〈u′

2u′

3〉

u2
max

at the same sections is shown. It can be
seen that, although the mesh is very coarse, the mean velocity profile computed with the
SD-LES, is in good agreement with the experiments throughout the comparison domain
and is better than the FluentTMresults. However, for the Reynolds stress, in some parts
of the comparison domain, a deviation from the PIV data is observed. This is due to
the fact that the mesh is too coarse (see Fig. 6) to resolve very well the fluctuations in
the flow, even if a second-order SD scheme with subgrid scale model is used. A future
work is needed to investigate the effect of the grid size and the turbulence modeling on
the quality of the Reynolds stresses when the new numerical approach is applied to the
chosen muffler test case.

6 CONCLUSIONS

A new numerical approach has been proposed for space discretization of the filtered
Navier-Stokes equations. The approach was based on a high-order Spectral Difference
scheme coupled with large eddy simulation. The accuracy and the reliability of the solver
are tested by solving the 2D turbulent flow around a square cylinder at Re = 2.2 × 104

and the 3D turbulent flow in a muffler at Re = 4.64 × 104. The new SD-LES approach
offers a much more realistic flow picture than the standard LES. It has been shown that
the SD-LES method improves the prediction of the unsteady flow features and reaches a
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Figure 7: Time averaged velocity profile 〈ũ3〉
umax

at three sections in the expansion chamber.
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Figure 8: Reynolds stress
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at three sections in the expansion chamber.

quality that is comparable to experiments. Regarding the Reynolds stresses in the muffler,
for better accuracy of the results, two issues need to be addressed - (a) grid fineness and
(b) turbulence modeling. The overall performances of the SD-LES method have proven
to be accurate and reliable in the simulation of fluid dynamic equations.
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