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Abstract. One of the key factors in simulating realistic wall–bounded flows at high
Reynolds numbers is the selection of an appropriate turbulence model for the steady RANS
equations. In this investigation, several turbulence models are explored in steady, com-
pressible, turbulent flows over a supersonic car, the ”BLOODHOUND SSC” [1], at Mach
numbers up to 1.1. Furthermore, three turbulent models are considered: the Spalart–
Allmaras [2], the Wilcox k − ω [3] and the Menter SST [4]. The FLITE flow solver [5]
developed at Swansea University is applied, which follows a finite volume approach with
stabilization and discontinuity capturing. A numerical benchmarking of the different tur-
bulent models is also performed on classical CFD cases, such as the transonic RAE 2822
airfoil and ONERA M6 wing. However, modelling the aerodynamics of a supersonic car
is very challenging. This is due to the presence of highly–separated flow regions and shock
waves; not to mention the numerical modelling of the rotating wheels and accounting for
the car–floor interaction.
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1 INTRODUCTION

Wall-bounded turbulent flows at high Reynolds numbers are mainly characterized by
a wide range of time and length scales (Pope [6]). The governing equations or full Navier-
Stokes (NS) equations are generally solved in order to capture all time scales and eddies
in the turbulent flow. This approach (Direct Numerical Simulation) is highly accurate
and supplies extensive information; however, it demands a very refined mesh to properly
capture the smallest scales (of the order of the Kolmogorov scales [7]). As a consequence,
significant computational resources are usually required, which makes this approach (i.e.,
DNS) almost unsuitable for industrial applications. In Large Eddy Simulations (LES) the
large scales or eddies are directly solved and the effects of the small scales are modeled;
thus, the filtered Navier-Stokes equations with an additional sub-grid scale stress term
are computed. An extensive review can be found in Meneveau and Katz [8]. Even the
appearance of LES has not completely solved the low resolution required in a boundary
layer flow; particularly, in the near-wall region. Furthermore, the use of an hybrid ap-
proach (RANS-LES) to overcome the low resolution needed in wall-bounded flows is an
emerging and promising area [9]; nevertheless, there is still a lot of ground to cover for
industrial use. Therefore, from a perspective of turbulent industrial flow simulations, the
Reynolds Averaged NavierStokes (RANS) equations are usually solved. RANS equations
are obtained by time averaging the full NS equations. These equations require a model
or closure to compute the Reynolds stresses originated by the correlation of turbulent
fluctuations. In fact, these Reynolds stresses come from the convective terms of the NS
equations after applying the time-averaging process. The selection of an appropriate tur-
bulence model is crucial to accurately represent important physical aspects of the flow,
such as boundary layer separation and shock-boundary layer interaction (Catalano and
Amato [10]). Catalano and Amato [10] tested five different turbulence models in 2-D and
3-D classical aerodynamic applications: Spalart Allmaras, the Myong and Kasagi k − ε,
Wilcox k − ω, Kok TNT, and Menter SST. They concluded that the Menter SST model
exhibited the best balance between the physical capabilities and the numerical robustness
for the transonic and high-lift flows explored.
In the present study, one-equation (Spalart–Allmaras) and two-equation (Wilcox k − ω
and Menter SST) turbulence models are implemented and validated in the FLITE flow
solver. Numerical results from typical aerodynamic cases in compressible flows are shown
and discussed. Finally, some preliminary numerical predictions over the supersonic car,
”BLOODHOUND SSC”, are illustrated.

2 Governing Equations

The unsteady compressible Navier-Stokes equations in integral form on a 3-D Cartesian
domain read as follows, ∫

Ω

∂Ui

∂t
dx+

∫
∂Ω

Fijnjdx =
∫
∂Ω

Gijnjdx, (1)
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where Ω ⊂ ℜ3 with surface ∂Ω, nj is the unit normal vector to ∂Ω. In addition, the
unknown vector of conservative variables is expressed as,

U =

 ρ
ρui

ρϵ

 (2)

Where ρ is the fluid density, ui represents the ith component of the velocity vector and ϵ
is the specific total energy. Furthermore, the inviscid and viscous flux tensors are given
by,

Fj =

 ρuj

ρuiuj

ui(ρϵ+ p)

 (3)

Gj =

 0
τij

ukτkj − qj

 (4)

respectively, where i varies from 1 to 3. The deviatoric stress tensor, τij is defined as,

τij = −2

3
µ
∂uk

∂xk

δij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5)

where µ is the dynamic viscosity, and qj = −k∂T/∂xj is the heat flux. Here, k is the
thermal conductivity and T is the absolute temperature. The following assumptions are
considered: i) the viscosity varies with temperature according to Sutherlands’s law; ii)
the Prandtl number is constant and equal to 0.72; iii) the gas is calorically perfect; iv)
the medium is continuous; and, v) body forces, buoyancy and heat transfer by radiation
are neglected.
In order to obtain the compressible RANS equations, the unsteady equations 1 must
be averaged in time. The idea is to time-average the governing equations to smooth
the instantaneous turbulent fluctuations in the flow field, while still being able to capture
time-dependency in the time scales of interest. Of course, this averaging procedure breaks
down if the time scale of the physical phenomena of relevance is of similar time scale as
that of the turbulence itself. However, in many engineering problems, the assumption is
valid; particularly, for flows where a statistically averaged steady state solution is sought.
Hence, for compressible flows, the Favre averaging procedure is mostly employed and it
is density weighted. The reader is referred to Sørensen’s thesis [11] for further details.

3 Turbulence Modelling in RANS

The Favre averaging procedure in time of eq. 1 generated an extra convective term.
This term is referred to as the Favre-averaged Reynolds-stress tensor, denoted by:

τRij = −ρu
′′
i u

′′
j . (6)
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The most straightforward approach is to associate the unknown Reynolds stresses with
the computed mean flow quantities by means of a turbulence model or closure. If the
Boussinesq hypothesis is applied, this results in a linear relationship to the mean flow
strain tensor through the eddy viscosity [3]:

τRij = µt

(
∂Ui

∂xj

+
∂Uj

∂xi

− 2

3

∂Uk

∂xk

δij

)
− 2

3
ρkδij. (7)

Here, k is the turbulent kinetic energy. Furthermore, the eddy viscosity, µt, depends on
the velocity and the length scale of the turbulent eddies, i.e. µt ∼ k1/2ℓ, being ℓ the
turbulence length scale. In this investigation, one and two transport equation models are
considered. The idea of these turbulence models is to solve partial differential equations
that describe the transport of the eddy viscosity; as a consequence, nonlocal and history
effects on µt are taken into account. Particularly, in the one-equation turbulence model
of SpalartAllmaras [2], a combination of the turbulent scales, so called the viscosity-like
variable, ν̄, is obtained by solving an empirical transport equation. On the other hand, the
two-equation turbulence models are complete because two transport equations are solved
for both turbulent scales. In particular, the k − ω turbulence models have significantly
increased its popularity during the last decade due to its good performance in boundary
layers flows subjected to adverse pressure gradients with eventual separation. Neverthe-
less, the original k−ω model developed by Wilcox [3] exhibits a freestream dependency of
ω. On the contrary, the k − ϵ model generally does not show this freestream dependency
of ω. Menter [4] combined the advantages of both models by means of blending functions
that permits to switch from k − ω (close to the wall) to k − ϵ as approaching the edge of
a boundary layer. A second improvement performed by Menter [4] was a modification to
the eddy viscosity based on the idea of Johnson-King model, which establishes that the
transport of the main turbulent shear stresses is crucial in the simulations of strong ad-
verse pressure gradient flows. This new approach was called shear-stress transport model,
well known as Menter SST.

4 Results and Discussion

The FLITE flow solver [5] for unstructured meshes and a finite-volume approach is
used in the assessment of Spalart–Allmaras, Wilcox k − ω and Menter SST turbulence
models. Classical aerodynamic cases such as the supersonic flat plate, transonic RAE
2822 airfoil and ONERA M6 wing are presented in this section, with a final discussion
about the BLOODHOUND SSC’s numerical predictions.

4.1 Supersonic flatplate

Although the flat plate shows a very simple geometry without a streamwise pressure
gradient; it is very appropriate to evaluate the performance of any turbulence model due
to the extensive experimental data and theoretical/empirical correlations available from
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the literature. In this study, a supersonic flat plate at a freestream Mach number, M∞,
equal to 2 is computed. The Reynolds number, Rex = xU∞/µ∞, based on the streamwise
x-coordinate is 1×107 per unit length. The flat plate is approximately 4 unit-length long
with a prescribed isentropic condition for the thermal field. A symmetry condition was
imposed on the lower boundary face located upstream of the leading edge. Downstream
of the flat plate (where the no-slip condition is assumed for the velocity), a freestream
condition is prescribed. Similarly, at inflow, outflow and top surfaces, freestream values
are imposed. This is a 3-D case with a symmetry condition assumed in lateral faces.
The spanwise length is approximately 0.8 unit-length wide; hence, the computational box
is wide enough to eliminate any influence from the lateral faces on the flow statistics.
Furthermore, numerical results shown here were taken from the vicinity of the central
longitudinal plane, far from lateral surfaces. Additionally, the height of the computational
domain is sufficient (∼ 0.8 unit-length) to allow a natural streamwise developing of the
turbulent boundary layer.
Figure 1 shows the streamwise variation of the skin friction coefficient, Cf , as a function of
Rex. Generally speaking, the corresponding values obtained by Spalart–Allmaras, Wilcox
k − ω and Menter SST turbulence models depict an excellent agreement with theoretical
correlations from White [12] and Schlichting [13]; particularly, by the end of the flat plate.
However, the Menter SST model exhibits a shorter transition and the Cf profile quickly
tends to realistic values downstream from the leading edge. The mean streamwise velocity
along the boundary layer follows the 1/7 power law distribution, as seen in fig. 2(a), for
Rex = 34 × 107. Nevertheless, the velocity profile computed from the Wilcox k − ω
model depicts some deviation from the 1/7 power law at y/δ ∼ 0.05. The thermal
boundary layer plays a crucial role in compressible wall-bounded flows; consequently, it
is very important its validation. In other words, the coupled behavior of the velocity and
thermal fields should be properly represented. In fig. 2(b), the computed temperature
distributions, T/T∞, as a function of the mean streamwise velocity, U/U∞, are plotted at
a streamwise station where Rex = 34 × 107. For comparison, the theoretical relation by
Crocco-Busemann (see page 502 in White [12]) is also included. The Crocco-Busemann
relation assumes a linear variation of the total enthalpy across the boundary layer in
zero pressure gradient with a unitary turbulent Prandtl number. Furthermore, present
thermal profiles show a good agreement with the Crocco-Busemann relation. It is worth
mentioning that the Crocco-Busemann relation is a function of the local wall-temperature;
therefore, a different theoretical profile is obtained for each turbulence model. Finally,
iso-contours of the turbulent kinetic energy, k∗ = k/U2

∞, are shown in fig. 3 from the
Menter SST model. The starting and ending points of the flat plate are represented by
cross-sectional cutting planes. It is appreciated the natural evolution of k∗ in the direction
of the flow. This term is mainly responsible for triggering turbulence in the flow.
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Figure 1: Skin friction coefficient as a function of Rex.
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Figure 2: Mean streamwise velocity (a) and temperature distribution (b) in the supersonic flat plate.
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Figure 3: Iso-contours of turbulent kinetic energy in the supersonic flat plate (Menter SST).

4.2 Transonic RAE 2822 airfoil

The second example consists on the simulation of steady turbulent transonic flow
around the RAE2822 airfoil. This is the standard test case 9 in [14] for turbulence
models. The freestream Mach number, M∞, is 0.73; the Reynolds number is 6.5×106 and
the angle of attack is α = 2.79o. The mesh is 3-D and composed by tetrahedral. The
initial mesh spacing in the normal direction at the surface is 1.0×10−6 or approximately
y+ = 0.2 in wall units.
Table 1 shows the computed values of lift, drag and momentum coefficients for the Spalart–
Allmaras, Wilcox k− ω and Menter SST turbulence models as well as experimental data
from the AGARD AR138 report [14]. For this mesh configuration, the Wilcox k − ω
turbulence model has produced the best approximation on the lift coefficient (the error
is approximately 3%). However, the Menter SST model possesses the best performance
on drag calculations: 11 drag-counts of difference with the experimental value for the
total drag, CD total, and only 3 drag-counts for the friction drag, CD friction. Furthermore,
the errors computed on the moment coefficient at 25% of the chord were very similar for
the Wilcox k − ω and Menter SST models (∼ 8%). The pressure (Cp) and skin friction
(Cf ) coefficients are depicted by fig. 4 together with the corresponding experimental data.
The Cp distribution of all turbulence models in 4(a) exhibits a peak close o the leading
edge in the upper surface, not catched by experiments. It is the authors’ understanding
that this is due to physical aspects; however, it may be attributed to an insufficient mesh
resolution in this zone and further exploration needs to be carried out. The Wilcox k−ω
model produced the best prediction of the shock location and pressure recovery behind
the shock in the upper surface, while the Spalart–Allmaras predicted a shock location
more upstream. Furthermore, the numerical predictions of Cp in the lower surface almost
overlap the experimental values in the three turbulence models. With respect to the Cf
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Table 1: Lift, drag and moment coefficients in RAE2822

Spalart-Allmaras Wilcox k − ω Menter SST Experiment
CL 0.696 0.779 0.743 0.803

CD total 0.0134 0.0154 0.0157 0.0168
CD friction 0.0040 0.0042 0.0053 0.0050
Cm 25% −0.0913 −0.1066 −0.0998 −0.099

distribution, the Wilcox k − ω model was the only turbulence model that predicted a
shock induced separation with a very small zone of separated flow at the upper part (see
fig. 4(b)). In addition, the Menter SST model captured more appropriately the abrupt
change in Cf at the shock location. However, the Menter SST model overpredicted the
Cf values upstream of the shock location, where the Spalart–Allmaras and Wilcox k − ω
turbulence models yielded more accurate results. On the other hand, all models underpre-
dicted the skin friction in the lower surface, the Menter SST model gave a closer prediction
to the only experimental value measured in the standard test case 9 in [14], as observed in
fig. 4(b). In figure 5, the velocity profiles at x/c = 0.404, where the flow is attached, are
depicted; and, all the numerical results are in excellent agreement with the experimental
data. Figure 6 shows iso-contours of the mean streamwise velocity for the Wilcox k − ω
model where it can be appreciated the location of the shock at x/c ∼ 0.55.
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Figure 4: Pressure coefficient (a) and skin friction (b) in the RAE2822 airfoil.
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Figure 5: Mean streamwise velocity distribution at x/c = 0.404.

Figure 6: Iso-contours of mean streamwise velocity (Wilcox k − ω).
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4.3 ONERA M6 Wing

In this section, numerical results by the turbulence models are presented for the ON-
ERA M6 wing [15]. The freestream Mach number, M∞, is 0.84 and the total Reynolds
number is 12×106 based on the mean geometric chord. This case is tested at two different
angles of attack: α = 3.06o and α = 6.0o. The latter represents a very challenging one
for turbulence model evaluation due to the presence of highly separated flow. The hybrid
mesh configuration is as follows: 6273852 tetrahedral elements, 2441561 prisms and 11600
pyramids with 109558 triangles in the surface. The mesh is composed by 35 viscous layers
for boundary layer capturing and the first off-wall point is approximately at y+ = 0.4 in
wall units, for points located in the vicinity of the leading edge where the skin friction is
high.
Table 2 contains information about the calculated values of lift and drag for the Spalart–
Allmaras, Wilcox k − ω and Menter SST turbulence models. Furthermore, the lowest
lift coefficient was obtained by the Menter SST model; on the other hand, the total and
friction coefficients were the highest computed by this model. The pressure coefficient
profiles are depicted by figure 7. In general, the three models show similar Cp at the
different spanwise sections. However, the Menter SST model predicts better the shock
location at sections y/(b/2) = 0.2 and 0.44 in the upper surface; while a better shock
capturing is performed by Spalart–Allmaras and Wilcox k− ω models at y/(b/2) = 0.65.
The skin friction coefficients, Cf , are plotted in fig. 8 at spanwise stations y/(b/2) = 0.9
and 0.95. It is observed a good agreement in all turbulence models about the location of
the flow separation point: x/c ∼ 0.25 and 0.2 for y/(b/2) = 0.9 and 0.95, respectively.
Nevertheless, the downstream recovery of Cf is quite different in all turbulence models.
The Wilcox k − ω and Menter SST turbulence models predicted similar reattachment
lengths, while Spalart–Allmaras produced the largest reattachment length. In addition,
the Menter SST model induced higher values for the skin friction downstream of the reat-
tachment point, which is consistent with the largest values of CD friction obtained in table
2. From figure 9, iso-surfaces of negative streamwise velocities are extracted; and, it is
observed that the recirculating flow bubble predicted by the Spalart–Allmaras model is
bigger than that of the Menter SST model.
Some preliminary results for the ONERA M6 wing at α = 6.0o are depicted by fig. 10,
where contours of the streamwise velocity can be appreciated at a spanwise section of
y/(b/2) = 0.9 for the Spalart–Allmaras and Menter SST approaches. The velocity dis-
tribution looks quite different for both models, with a separation zone significantly much
larger in the Spalart–Allmaras results. This can be confirmed from fig. 11, the Spalart–
Allmaras model yields a stronger reverse flow provoked by the detached vortex. Moreover,
the flow reattachment occurs closer to the trailing edge in case of Spalart–Allmaras pre-
dictions than for Menter SST simulations. The module of vorticity is shown by fig. 12(a)
at y/(b/2) = 0.9 obtained by the Menter SST model. Two strong vortices are generated
at this spanwise section, one in the vicinity of the leading edge (i.e., x/c ∼ 0.25) and the
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Table 2: Lift and drag coefficients in ONERA M6 wing at α = 3.06o

Spalart-Allmaras Wilcox k − ω Menter SST
CL 0.2596 0.2623 0.2530

CD total 0.0175 0.0179 0.0189
CD friction 0.0048 0.0051 0.0057

other at the trailing edge. The complex vortical structures generated on the upper surface
at such a high angle of attack (α = 6.0o) are observed in fig. 12(b). There, iso-surfaces
of vorticity with a normalized value of 1 are extracted; and, the detached vortices at
the trailing edge are clearly observed. In summary, the two equation turbulence models
(Wilcox k − ω and Menter SST) have demonstrated similar performance at the high-lift
condition (i.e., α = 6.0o) where separated flows play an important role (CL ≈ 0.34). On
the other hand, the very low lift computed by the Spalart–Allmaras model at this condi-
tion is consistent with other concluding remarks from the literature about the limitations
of this model in predicting highly-separated turbulent flows.

4.4 Supersonic Car

Preliminary numerical predictions over a supersonic car, the ”BLOODHOUND SSC”,
are shown and discussed in this section. Two different freestream Mach numbers, M∞,
are considered: 0.85 and 1.1, respectively. The total Reynolds number is approximately
325×106 based on the streamwise length of the car (∼ 13m). The Spalart–Allmaras (SA)
and Wilcox k−ω turbulence models are tested together with the JST [16] and HLLC [17]
schemes for convective flux calculation. Table 3 depicts the corresponding aerodynamic
forces at M∞ = 0.85 (i.e., lift, total drag and friction drag) normalized by the freestream
dynamic pressure, q, and the integration surface, S. In general, the Spalart–Allmaras
and Wilcox k − ω models have produced similar global aerodynamic forces over the car
for the same convective flux scheme. The HLLC scheme yields roughly higher values for
the lift and total drag. The residual history of the density is shown by fig. 13 for the
Spalart–Allmaras and Wilcox k−ω turbulence models by considering the JST scheme at
M∞ = 0.85 with a much faster rate of converge in the Wilcox k − ω’s predictions. Fig-
ure 14 exhibits the pressure coefficient distributions, Cp, at a centreline plane of the car
for the following combinations: JST-SA vs. HLLC-SA (top), JST-SA vs. JST-k-ω (mid-
dle) and HLLC-SA vs. HLLC-k-ω (bottom). Generally speaking, the most significant
discrepancies in Cp have been obtained for the two convective flux schemes considered
(i.e., JST and HLLC) at the same turbulence model, being the HLLC more dissipative.
Some interesting conclusions can be drawn from the different Cp profiles. Upstream of the
intake duct, two zones of favorable pressure gradients (FPG) can be observed: mild and
strong. This provokes a significant acceleration of the flow; as a consequence, a sufficient
quality of the airflow to he inlet duct is ensured for a maximum efficiency of the engine.
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Figure 7: Pressure coefficient distributions in the ONERA M6 wing at α = 3.06o.
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Figure 8: Skin friction distributions in the ONERA M6 wing at α = 3.06o.

(a) Spalart-Allmaras (b) Menter SST

Figure 9: Iso-surfaces of streamwise velocity over the upper surface in the ONERA M6 wing at α = 3.06o.
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(a) Spalart-Allmaras (b) Menter SST

Figure 10: Iso-contours of streamwise velocity for y/(b/2) = 0.9 in the ONERA M6 wing at α = 6.0o.

(a) Spalart-Allmaras (b) Menter SST

Figure 11: Zoom of velocity vectors for y/(b/2) = 0.9 in the ONERA M6 wing at α = 6.0o.
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(a) Iso-contours of vorticity for y/(b/2) = 0.9 (b) Iso-surfaces of vorticity (ω̄ = 1)

Figure 12: ONERA M6 wing at α = 6.0o (Menter SST).

Downstream of the inlet duct, a zone of constant pressure gradient can be observed al-
most up to the vertical tail. Although a zero pressure gradient (ZPG) flow is not the best
option to delay flow separation (an accelerating boundary layer or FPG flow has a better
performance in delaying separation), it is not the worst case scenario because an adverse
pressure pressure (APG) flow is more prone to boundary layer detachment.
Table 4 contains the lift and drag forces at a freestream Mach number of 1.1. In particular,
the combination JST-k-ω blew up after some time steps (N/A) and ongoing investiga-
tions have been performed. The computed aerodynamic forces have been very consistent;
perhaps, the greatest discrepancies (∼ 40%) are observed in the friction drag for the com-
binations JST-SA vs. HLLC-k-ω. Figures 15 and 16 depict iso-contours of Mach numbers
for M∞ = 0.85 and 1.1, respectively. The longitudinal plane (x−y) is located at z = 0.5m
from the floor and shows the rear part of the car. The blending approaches JST-SA vs.
HLLC-SA are considered. Larger zones of low velocity (blue) behind the wheels and en-
gine are predicted by JST-SA than those of HLLC-SA. These areas are more evident at
lower freestream Mach numbers (M∞ = 0.85), and, it can be related to vortex shedding
processes. On the contrary, the HLLC-SA combination induces bigger zones of high Mach
numbers in the car-wheel intersection. The outlet engine boundary condition provokes a
free shear flow behind the car with low-velocity zones in the jet-atmosphere transition.
Particularly, this zone of low Mach numbers is almost imperceptible in the HLLC-SA
combination at M∞ = 1.1 (see fig. 16(b)). Additionally, the decreasing cross-sectional
shape of the car structure upstream of the engine induces an adverse pressure gradient
zone (APG) with a decelerating boundary layer and eventual flow separation. This is
confirmed by the zone of very low Mach numbers, which is more evident in the JST-SA
scheme (fig. 16(a)).
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Table 3: Aerodynamic forces over the BLOODHOUND SSC for M∞ = 0.85

Spalart-Allmaras Lift/(q × S) TotalDrag/(q × S) FrictionDrag/(q × S)
JST 0.07 1.18 0.25
HLLC 0.25 1.45 0.10

Wilcox k − ω Lift/(q × S) TotalDrag/(q × S) FrictionDrag/(q × S)
JST 0.10 1.18 0.24
HLLC 0.26 1.58 0.23
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Figure 13: Residual history of density at M∞ = 0.85

Table 4: Aerodynamic forces over the BLOODHOUND SSC for M∞ = 1.1

Spalart-Allmaras Lift/(q × S) TotalDrag/(q × S) FrictionDrag/(q × S)
JST 0.42 1.61 0.06
HLLC 0.38 1.83 0.08

Wilcox k − ω Lift/(q × S) TotalDrag/(q × S) FrictionDrag/(q × S)
JST N/A N/A N/A
HLLC 0.40 1.84 0.10
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Figure 14: Pressure coefficient distributions, Cp in ground centreline at M∞ = 0.85.
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(a) Spalart-Allmaras - JST (b) Spalart-Allmaras - HLLC

Figure 15: Iso-contour of Mach numbers at M∞ = 0.85 and height = 0.5m.

(a) Spalart-Allmaras - JST (b) Spalart-Allmaras - HLLC

Figure 16: Iso-contour of Mach numbers at M∞ = 1.1 and height = 0.5m.
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5 CONCLUSIONS

An assessment of three popular turbulent models is performed in 3-D aerodynamic
cases. The FLITE flow solver by utilizing the Spalart–Allmaras, the Wilcox k − ω and
the Menter SST turbulence models has been applied in a supersonic flat plate, RAE2822
airfoil, the ONERA M6 wing and the supersonic car BLOODHOUND SSC.
The transonic RAE2822 airfoil possesses a strong shock-boundary layer interaction with an
induced separation. The ONERA M6 wing exhibits a very complex flow phenomena such
as double shocks, high-lift flow, strong adverse pressure gradients and streamline curvature
effects. For attached flows or middle separated flows, there is not a clear superiority of the
two-equation turbulence models over the one-equation Spalart–Allmaras model. However,
the ONERA M6 wing at an angle of attack equal to α = 6.0o, where flow separation is
dominant, has indicated the contrary. The Menter SST has shown the best compromise
between accurately describing the physics of the flow and numerical stability. The shear
stress transport (SST) formulation may be the reason for this.
Numerical predictions over a supersonic car, the ”BLOODHOUND SSC” [1], have also
been carried out and some preliminary results have been shown for the Spalart–Allmaras
and the Wilcox k − ω turbulence models together with the JST and HLLC convective
flux schemes. Interestingly, the type of convective flux computation is more influential
than the turbulence model itself in the aerodynamic forces over the car. Furthermore,
important insights were acquired on flow phenomena. Future investigation will focus
on unsteady flow simulations over the supersonic car. This could be more appropriate
in realistically capturing the complex turbulent structures governed by shock-boundary
layer interactions and highly-separated flows.
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