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Abstract. Dusty gas through a set of two cascades of airfoils (blades) is studied numerically.
The first cascade (rotor) moves and the second one (stator) is immovable. Such a flow can be
considered, in some sense, as a flow in an inlet stage of a turbomachine, for example, for an
inlet compressor of an aircraft turbojet engine. The particle concentration is assumed to be very
low, so that a two-phase gas–particle flow can be considered as dilute. The reverse effect of the
particle phase on the carrier gas flow and the inter-particle collisions are negligible. Time-
dependent two-dimensional gas flow is described by the complete Navier–Stokes equations.
The particles are assumed to be solid spheres, monosized or distributed Log-normally in size.
The particle drag force, the transverse Magnus force, and the damping torque are taken into
account in the model of gas-particle interaction. Impact interaction of particles with blades
is considered as frictional and not completely elastic. Flow fields of the carrier gas and flow
patterns of the particle phase are obtained and discussed.

1 INTRODUCTION

Flow through cascades of airfoils occurs in aircraft turbojet engines and other axial turboma-
chines. In practice, a working gas flowing through a machine channel often contains suspended
solid particles or liquid droplets. The presence of a dispersed phase in the flow results in some
new effects which more often than not, are undesirable. Specifically, it causes the erosion of
blades due to multiple impacts of particles or droplets with them and the additional momentum
and energy losses [1]. In this case, the protection of blades from erosion becomes one of the
key problems. The most vulnerable to particles’ ”attack” is an inlet stage of a turbomachine.
For prediction of areas on blade surfaces which are exposed to the strongest erosive effect, it
is necessary to have a clear insight into characteristic features of the particles’ behaviour in the
flow. Actual flow in a turbomachine channel is, strictly speaking, three-dimensional. The 3D-
effects are particularly essential near the axis and the channel walls. However, some important
flow features in the inlet stage and in the sequential rims can be studied with the use of 2D-
flow model. Such an approach turned out very fruitful and brought the well-known 2D-theory
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of cascade flow into being (e.g., [2]). This theory deals with steady-state dust-free gas flows.
Steady-state flow of gas-particle mixture through an immovable cascade was analyzed by Hus-
sein and Tabakoff [3]. Steady-state gas-particle flow model was used in [4] to study the flow in
a single rotating cascade.

In the present study the behaviour of solid particles in the time-dependent high-speed sub-
sonic 2D-flow in a set of two, moving and stationary, cascades of blades is simulated numeri-
cally and the results are discussed and analyzed. The particle mass load is assumed to be very
low, so that the inter-particle collisions and the effect of the dispersed phase on the carrier gas
flow can be neglected. In this case, the problem of two-phase flow simulation is reduced to
the sequential solving of two problems: (i) computation of the carrier gas flow field, and (ii)
calculation of the particles’ motion in this flow field. The input data in computations (flow
properties, speed of the moving cascade, airfoil sizes, etc.) are chosen to be close to those
in the flow through an axial compressor of an aircraft turbojet engine. The main aim of this
study is to understand how such actual effect as the particles’ distribution in size influences the
particle phase flow structure in a complex vortex flow of a dusty gas through the inlet system
”rotor-stator” of a turbojet engine.

2 FORMULATION OF THE PROBLEM

2.1 Schematic of flow

We consider a two-phase gas–particle flow through a set of two cascades, the first of which
moves with the constant velocity Vr and the second one is stationary (see Fig. 1). Both cascades
have the same step s (distance between airfoils along a cascade). Airfoils of the first cascade
are set at an angle β with respect to the undisturbed flow direction. For visualization of the
particle-phase flow in computational simulation, particles from a cloud of finite width h equal
to the airfoil chord l are considered.

Figure 1: Schematic of arrangement of the two cascades in an undisturbed flow.

A two-phase flow is considered as dilute and one-way coupled. Estimates for the particle
concentration when this model is valid have been obtained in [5]. They show that the upper
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bound of the concentration depends on the particle size, all other parameters being fixed. Mo-
tion of particles is governed by the gas–particle interaction and the particle–blade collisions.
Particles being more inertial compared with the carrier gas do not follow streamlines, they can
collide with blades and rebound from them. Trajectories of rebounded (reflected) particles can
intersect with each other and with the ones of incident particles. Calculations of a large number
of particles allow to understand the specific features of particles’ behaviour in the flow. Because
the gas–particle flow considered in the present study is time-dependent, instant flow patterns of
the carrier gas and the particle phase are given and discussed below.

2.2 Modelling of the carrier gas flow

The classical theory of cascades is based on the model of inviscid gas. Preliminary compu-
tational simulation of a high-speed subsonic gas flow through the ”rotor–stator” set of cascades
was performed on the basis of the Euler equations and the complete Navier–Stokes equations.
The same grid was used in the computation domain in both cases. Comparison of the results
showed that the effects associated with gas viscosity (development of boundary layers on air-
foils and vortex wakes behind them) played an important role in forming the flow structure. The
Reynolds numberRe∞ = ρ∞V∞l/µ∞, where l is the chord of an airfoil, is approximately equal
to 1.4 · 106 in our problem, hence, the flow is actually turbulent, and a commonly accepted ap-
proach in this case requires the use of the Reynolds averaged Navier–Stokes equations instead
of the Navier–Stokes equations by themselves. However, we share this judgment only in part.
The matter is that the large-scale vortex flow structure, which is of greatest important in many
applications, can be obtained very often without a fine resolution of small turbulent eddies, and
sometimes even without the boundary layer effects. Some evidence for this contention is given
in Appendix where the vortex structure of separated flow behind a cylinder obtained by compu-
tational simulation with the use of three different flow models is shown and briefly discussed.
The Navier–Stokes equations for time-depended compressible 2D-flow can be written in the
Cartesian coordinates (x, y) in the following compact form [6]:

∂Q

∂t
+
∂Fx

∂x
+
∂Fy

∂y
=
∂Gx

∂x
+
∂Gy

∂y
, (1)

where vectors Q, Fx, Fy, Gx, and Gy are defined as follows:

Q =


ρ
ρu
ρv
ρe

 , Fx =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 , Fy =


ρv
ρuv

ρv2 + p
(ρe+ p)v

 , (2)

Gx =


0
τxx
τyx

uτxx + vτyx − qx

 , Gy =


0
τxy
τyy

uτxy + vτyy − qy

 .
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Here

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
, τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (3)

qx = −k∂T
∂x

, qy = −k∂T
∂y

, p = ρ<T, e = cV T + (1/2)(u2 + v2).

In the above equations, t is the time; ρ, p, e, T , µ, k are the gas density, the pressure, the specific
total energy, the temperature, the viscosity, and the thermal conductivity, respectively; u and v
are the x- and y-components of the velocity vector; < is the specific gas constant, cV is the
specific heat at constant volume. We use the following relations for µ and k:

µ = µ0

(
T

T0

)3/2
T0 + S0

T + S0

, k = cpµ/Pr. (4)

Here the first relation is the Sutherlend formula, cp is the specific heat at constant pressure, Pr
is the Prandtl number.

The system of equations (1)–(4) is closed. In the present study, it is solved numerically. The
boundary conditions with application to the computation domain will be described in Subsec-
tion 3.1.

2.3 Modelling of the particle phase flow

The Lagrangian approach is used for modelling the particles’ motion. The motion of a
particle is described by the momentum and angular momentum equations which are added by
the kinematic relation between the particle position vector rp and the velocity vector vp

mp
dvp

dt
= fD + fM, Jp

dωp

dt
= lp,

drp

dt
= vp. (5)

Here mp = (4/3)ρpπr
3
p, Jp = (2/5)mpr

2
p, rp, and ωp are the particle mass, the moment of

inertia, the radius, and the rotational velocity, respectively. We include into the force on a
particle the drag force fD and the lift Magnus force fM, which dominate all other components
in the flow. The Magnus force is developed due to simultaneous translational and rotational
motion of a particle, and it can be significant for particles twisted in particle–blade collisions.
The damping torque lp acts on a particle if its relative rotational velocity is not zero. We use the
conventional relations for calculation of fD, fM and lp

fD =
1

2
CDπr

2
pρ|v − vp|(v − vp),

fM =
4

3
Cωπr

3
pρ[(ω − ωp)× (v − vp)],

lp =
1

2
Clr

5
pρ|ω − ωp|(ω − ωp), ω =

1

2
curl v.

(6)
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The coefficients CD ,Cω and Cl depend on the dimensionless parameters of flow around a
particle: the relative Mach and Reynolds numbers, the relative rotational Reynolds number, etc.
These coefficients are calculated from relations which approximate the results of theoretical and
numerical solutions, and experimental data.

For CD we use the Henderson approximate formula [7] for subsonic flow over a particle
(0 < Mp < 1):

C1
D(Rep,Mp, Tp/T ) =

= 24

{
Rep +

√
γ

2
Mp

[
4.33 +

3.65− 1.53Tp/T

1 + 0.353Tp/T
exp

(
−0.247

√
2

γ

Rep

Mp

)]}−1

+

[
4.5 + 0.38(0.03Rep + 0.48

√
Rep)

1 + 0.03Rep + 0.48
√

Rep

+ 0.1M2
p + 0.2M8

p

]
exp

(
− Mp

2
√

Rep

)

+0.6

√
γ

2
Mp

[
1− exp

(
−Mp

Rep

)]
. (7)

Here Rep = 2ρ|v − vp|rp/µ and Mp = |v − vp|/
√
γRT are the relative particle Reynolds and

Mach numbers. The dependence of CD on Tp/T is very week in the flow under consideration.
That is why we ignore this dependence, and take the ratio Tp/T equal to unity.

For calculation of Cω, we use the exact solution by Rubinow and Keller [8] in combination
with the approximate formula suggested by Oesterle and Bui Dinh [9]:

Cω =

{
3/4 2γω < 0.45,

(3/8)γω[0.45 + (2γω − 0.45) exp(−0.075γ0.4
ω Re0.7

p )], 2γω ≥ 0.45,
(8)

where γω = ωprp/|v − vp|.
The expression for the coefficient Cl is taken in the form [10]:

Cl =
Cl1√
Repω

+
Cl2

Repω

, (9)

where Repω = ρ|ω − ωp|r2
p/µ, and Cl1 and Cl2 are given in Table 1.

Table 1: Values of Cl1 and Cl2 in relation (9)

Repω 0− 6 6− 20 20− 50 50− 4× 104

Cl1 0 5.32 6.44 6.45

Cl2 16π 37.2 32.2 32.1
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Being involved into the motion by the carrier gas, particles, due to their inertia, do not fol-
low the gas streamlines and can collide with the blades of cascades. We have used the semi-
empirical particle–wall collision model [11] for calculating the parameters of a particle just after
its rebound. This model is based on the laws of mechanics and the experimental data for the
restitution coefficients of the normal (vp) and tangential (up) velocities of the center of gravity
of a particle (see Fig. 2, left). It is valid at moderate and high particle impact velocities. The
final relations for the normal, tangential, and rotational velocities of a particle after its rebound
have the form

vp2 = −vp1an,

up2 =

up1aτ + ωp1 rp(aτ − 1), β < β∗,

up1aτ −
2

7
ωp1 rp, β ≥ β∗,

ωp2 =


5

2

up1

rp

(aτ − 1) +
5

2
ωp1

(
aτ −

3

5

)
, β < β∗,

− up1

rp

aτ +
2

7
ωp1, β ≥ β∗.

(10)

Figure 2: Schematic of a collision (left) and Log-normal law for particles’ distribution in size (right).

Here, an and aτ are the restitution coefficients; β∗ is the critical value of β: if β < β∗ we have
a sliding collision, if β ≥ β∗ a collision is non-sliding. The formulae for calculation of the
restitution coefficients are taken from [11,12]

an = 1− {1− exp[−0.1 V 0.61
p1 ]} sin β, Vp1 = (u2

p1 + v2
p1)1/2,

aτ = C0 + C1

(π
2
− β

)2

+ C2

(π
2
− β

)4

+ C3

(π
2
− β

)6

.
(11)

The coefficients in the last formula and the critical angle β∗ depend on the wall and particle
materials. In calculations, they were taken as follows: C0 = 0.690, C1 = −0.288, C2 = 0.114,
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C3 = 0.0219 and β∗ = 0.1911. These values correspond to particles from hard materials like
corundum or silicon dioxide, and a steel wall.

In the majority of papers on two-phase gas-particle flow, the particles are assumed to be
monosized. However, in practice particles are distributed in size that results in mixing of par-
ticles of different size in a disturbed flow. In the present study we consider also polydisperse
particles. The Log-normal distribution of particles in size in an undisturbed flow is used in
calculations. In this case, the particle mass frequency distribution function has the form

g∞(rp) =
1√

2π rp ln σ
exp

[
−
(

ln rp − ln rg√
2 ln σ

)2
]
. (12)

The parameter rg is related with the most probable particle radius rpm by rg = rpm exp(ln2 σ).
The plot of function (12) for σ = 1.2 (this value is taken in calculations) is shown in Fig. 2
(right).

3 NUMERICAL METHOD

3.1 Computational domain and boundary conditions

Computation domain in (xy)-plane consists of two blocks A and B (see Fig. 3). The block
A moves together with a rotor blade, and B is stationary. A structured curvilinear grid fitted to
the blade contours is introduced in each block. Both grids are refined to the blade surfaces and
in the areas behind blades to resolve the flow structure inside the boundary layers and in the
wakes. The total length of both blocks in the direction of an undisturbed flow is equal to 4.4 l (l
is the airfoil chord).

Figure 3: Computational domain and schematic of a grid.

At the airfoil surfaces, the no-slip condition and the constant-temperature wall condition are
enforced for the Navier–Stokes equations.
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The periodic conditions in y-direction are set at the top and bottom boundaries of each block.
This is possible if no large-scale areas of separated flow arise. At the inflow boundary of the
moving block the gas velocity and the density are calculated from the given total enthalpy and
entropy in the undisturbed flow, and the pressure is extrapolated from the computation domain.
At the outflow boundary of the stationary block the pressure is taken equal to 1.2 p∞ (this value
agrees with some experiments) and other parameters are extrapolated from the computation
domain. Such a technique is in agreement with the characteristic properties of gas dynamic
equations.

A special matching procedure used at the contact boundary between the moving and station-
ary blocks will be described below in Subsection 3.3.

At the initial instant t = 0, a uniform flow with the undisturbed parameters is taken in
the whole domain, and then computational simulation of the carrier gas flow is going on up
to a quasi-time-periodic solution is reached. After this the particles are introduced into the
simulation procedure.

3.2 Finite-volume scheme for the Navier–Stokes equations

An explicit finite-volume method is used for numerical solving the Navier–Stokes equations
(1). Consider a cell Ci of the grid (Fig. 4). Integrating the equations (1) over a volume of this
cell and applying the Gauss’s theorem we obtain these equations in the following integral form:

∂

∂t

∫
Ωi

Q dΩ +

∮
Si

FdS =

∮
Si

GdS, F = Fxnx + Fyny, G = Gxnx + Gyny. (13)

Here Ωi and Si are the volume and the surface of the cell Ci, n = (nx, ny) is a unit vector
normal to Si and directed outward. In the plane (xy), Ωi and Si are considered as the square
and the boundary of a cell.

We represent the integrals over Si as a sum of integrals over separate cell faces Sij (j =
1, 2, 3, 4), and apply the mean value theorem to calculate all the integrals in (13). Then we
denote flow parameters at instants t and t + ∆t by superscripts n and n + 1, respectively, and
approximate the derivative ∂/∂t by a finite-difference. The final discrete approximation of (13)
takes the form:

Qn+1
i = Qn

i −
∆t

Ωi

4∑
j=1

Fn
ijSij +

∆t

Ωi

4∑
j=1

Gn
ijSij. (14)

Here Qn and Qn+1 are ascribed to the center of i-th cell, Fij and Gij are the vectors of ”inviscid”
and ”viscous” fluxes of Q through the j-th face of i-th cell.

At first, we describe briefly the method of calculation of Fij . In the present study, the ”in-
viscid” fluxed are calculated from the Roe scheme [13] with the use of the correction suggested
by Harten [14]. Introduce the Jacob’s matrix A = ∂F/∂Q. Their eigenvalues λ(k) are found
from the characteristic equation det(A − λI) = 0. In our case, the eigenvalues λ(1), λ(2), λ(3),
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Figure 4: Cell Ci and its environment.

and λ(4) are equal to vn, vn, vn + c and vn − c, respectively, where vn = unx + v ny is the
gas velocity component normal to a cell face, and c is the speed of sound. Denote R and L
the matrices with the columns from right and left eigenvectors of the matrix A. These matrices
have the form:

R =



1 0
ρ

2c

ρ

2c

u ρny
ρ

2c
(u+ cnx)

ρ

2c
(u− cnx)

v −ρnx
ρ

2c
(v + cny)

ρ

2c
(v − cny)

1

2
(u2 + v2) ρvτ

ρ

2c
(H + cvn)

ρ

2c
(H − cvn)


, (15)

L =



1− γ − 1

2
M2 (γ − 1)

u

c2
(γ − 1)

v

c2
−γ − 1

c2

−vτ
ρ

ny
ρ

−nx
ρ

0

c

ρ

(
γ − 1

2
M2 − vn

c

)
1

ρ

(
nx − (γ − 1)

u

c

) 1

ρ

(
ny − (γ − 1)

v

c

) γ − 1

ρc

c

ρ

(
γ − 1

2
M2 +

vn
c

)
−1

ρ

(
nx + (γ − 1)

u

c

)
−1

ρ

(
ny + (γ − 1)

v

c

) γ − 1

ρc


,

where H = c2/(γ − 1) + (1/2)(u2 + v2), vτ = uny − v nx, and M is the Mach number.
For calculation of the vector Fij in a summand of the first sum in (14), we consider j-th

face of i-th cell. This face is the boundary between i-th cell and an adjacent j-th one. Denote
gas parameters in i-th cell at j-th face by subscript l (left), and parameters at the same face in
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j-th cell by subscript r (right). This corresponds to path-tracing the boundary of i-th cell in
an anti-clockwise direction. The vector Fij is calculated as follows (subscript i is omitted for
short):

Fj =
1

2
(F(Qr) + F(Ql)−RjΛjLj(Qr −Ql)), (16)

where

Λj =


ψ(λ

(1)
j ) 0 0 0

0 ψ(λ
(2)
j ) 0 0

0 0 ψ(λ
(3)
j ) 0

0 0 0 ψ(λ
(4)
j )

 . (17)

Recall that F = Fxnx+Fyny (see (13)), and Q, Fx and Fy are defined by (2). The components
of matrices Rj and Lj , as well as the eigenvalues λ(k)

j (k = 1, 2, 3, 4), are calculated using the
values of gas parameters determined by the following relations:

ρj =
√
ρl
√
ρr, uj =

ul
√
ρl + ur

√
ρr√

ρl +
√
ρr

, vj =
vl
√
ρl + vr

√
ρr√

ρl +
√
ρr

, (18)

Hj =
Hl
√
ρl +Hr

√
ρr√

ρl +
√
ρr

, cj =
√

(Hj − (u2
j + v2

j )/2)(γ − 1).

The function ψ(λ) is defined by relations [14]

ψ(λ) =

{
|λ|, |λ| ≥ ε,

(λ2 + ε2)/2ε, |λ| < ε,
(19)

where ε is a small positive parameter (in calculations it is taken equal to 0.1). The last relation
in (19) is applied to correct an eigenvalue λ in the case when |λ| is small enough that can result
in oscillations of numerical solution.

For calculation of the components of the vector Q at j-th face of a i-th cell, a bilinear recon-
struction of gas parameters ρ, u, v, p is used. Let φ be any of parameters listed above. Its value
in the center (xCi, yCi) of the cell Ci we denote φCi, and its dependence on coordinates x and y
within the cell we take in the form:

φ(x, y) = φCi + ai (x− xCi) + bi (y − yCi). (20)

The coefficients ai and bi represent the components of the vector ∇φ, and they are determined
with taking account of values of φ in all neighbouring cells which have common boundaries
with Ci (these cells are shown in Fig. 4 (left) by grey colour). At first, consider two such
consecutive cells Cj and Cj+1, and build up a bilinear reconstruction for φ using the values of
φ in the centers of three cells: Ci, Cj and Cj+1. This procedure gives us a pair of coefficients
which we denote a(j)

i , b(j)
i . Then we repeat the procedure for all combinations of the cell Ci
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with other pairs of cells consecutively adjacent to Ci, and find four pairs a(j)
i , b(j)

i (j = 1, 2, 3,
4). The final values of ai and bi in (20) are calculated as weighting averages with the use of
technique which is similar to the WENO reconstruction (see, e.g., [15]):

ai =

4∑
j=1

wja
(j)
i

4∑
j=1

wj

, bi =

4∑
j=1

wjb
(j)
i

4∑
j=1

wj

, wj =
1

ε+ ζθj
, ζj =

[
(a

(j)
i )2 + (b

(j)
i )2

]1/2

. (21)

Here ε is a small parameter (in calculations, it is taken equal to 10−5). The power θ in the
present work is taken as θ = 2. We have to note that the technique of weighting averaging (21)
in computational simulation of flow considered in the present paper is much better than the use
of ”minmod” limiter [14] which also has been applied at the initial stage of the study.

After the coefficients ai and bi are found, we calculate the gas parameters at the center of j-th
face of the cell Ci using the bilinear reconstruction (20). Then we calculate the components of
the vector Q which is treated as Ql. Quite similar, the components of the vector Qr (enters into
(16)) at the same j-th face are calculated.

Consider now the algorithm of calculation of ”viscous” flux Gij through the face Sij in (14).
The vector G is defined by (13), and the vectors Gx and Gy entering into (13) have the com-
ponents defined by (2) with the expressions (3)–(4) for τxx, τyy, τxy, qx, and qy. The viscosity
µ, and the thermal conductivity k in these expressions depend on the temperature (see relations
(4)). To determine the vector Gij we have to know at the face Sij the following parameters: u,
v, T , ∂u/∂x, ∂v/∂x, ∂u/∂y, ∂v/∂y, ∂T/∂x and ∂T/∂y. For subsequent reasoning and mathe-
matical transformations, we denote any of the listed parameters by f . In the present study, u, v
and T at the face Sij are calculated as the average of these parameters at the centers ci and cj of
i-th and j-th cells (Fig 4, right): f = (1/2)(fci + fcj ). To calculate the derivatives ∂f/∂x and
∂f/∂y at the face Sij , we first introduce the local coordinates (ξ, η) (see Fig. 4) and calculate
the derivatives ∂f/∂ξ and ∂f/∂η from the approximate formulae:

∂f

∂ξ
=
fcj − fci

∆ξ
,

∂f

∂η
=
fnj
− fni

∆η
, (22)

where fci , fcj are the values of f at the centers ci, cj of i-th and j-th cells, ∆ξ and ∆η are the
distance between the centers of these cells, and between the grid nodes ni and nj , respectively.
Any gas parameter (f ) at a grid node is calculated as the average of its values at the centers of
all cells surrounding the node. Then we calculate the derivatives ∂f/∂x and ∂f/∂y from the
following relations:

∂f

∂x
=
∂f

∂ξ

∂ξ

∂x
+
∂f

∂η

∂η

∂x
,

∂f

∂y
=
∂f

∂ξ

∂ξ

∂y
+
∂f

∂η

∂η

∂y
, (23)

where
∂ξ

∂x
=
∂y

∂η
J−1,

∂ξ

∂y
= −∂x

∂η
J−1,

∂η

∂x
= −∂y

∂ξ
J−1,

∂η

∂y
=
∂x

∂ξ
J−1, (24)
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J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
.

After we calculate the derivatives ∂u/∂x, ∂v/∂x, ∂u/∂y, ∂v/∂y, ∂T/∂x and ∂T/∂y, we sub-
stitute them together with u, v and T into relations (2)–(4) and find the components of Gx and
Gy. Then we determine Gij . This algorithm is applied to all faces Sij (j = 1, 2, 3, 4) of the cell
Ci.

The time step ∆t in (14) is chosen from the conventional stability condition.

3.3 Matching procedure at the boundary of the moving and stationary blocks

For the ”rotor” and ”stator” blocks we use two different system of coordinates, every of
each is immovable relatively to the corresponding block. In calculations of cells adjacent to
the boundary between the moving (A) and stationary (B) blocks (see Figs. 3 and 5), we use a
moving coordinate system for boundary cells in blockA and an immovable one for cells in block
B. It is necessary in this case to recalculate the y-component of the gas velocity. After it we
apply the finite-volume scheme to near-boundary cells. The main problem is to find ”inviscid”
and ”viscous” fluxes through the common boundary of adjacent cells of different blocks.

Figure 5: Boundary between the moving (A) and stationary (B) blocks and a near-boundary cell Ci.

Consider, for example, the near-boundary cell Ci and the surrounding cells shown by grey
colour in Fig. 5. The ”inviscid” flux F through the face bd can be calculated in the manner quite
similar to that described above for a inner cell. However in our example, we have to determine
the coefficients in the bilinear reconstruction (20) using not four, but five groups of cells. Every
group includes the cell Ci and two consecutive ”grey” ones. As a result, we find five pairs a(k)

i

and b(k)
i (k = 1, ... , 5). Then we apply the procedure of weighing averaging (21) to a(k)

i and
b

(k)
i and find ai and bi. After it we can calculate gas parameters in Ci at any point of the face
bd from (20). We calculate them at the centers of bc and cd, and use these values to determine
the vector Q which is treated as Ql in subsequent calculations. Similar to this we calculate Qr

at the centers of bc and cd of the corresponding ”grey” cells. Now we can calculate the flux F
through bc and cd from (16). The flux through the whole face bd of the cell Ci is equal to the
sum of fluxes through bc and cd.

12
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”Viscous” fluxes through the parts bc and cd is calculated with the use of the relations (22)–
(24), and the total flux through the face bd of the cell Ci is equal to their sum.

3.4 Calculation of particles’ motion

After a quasi-time-periodic solution of the Navier–Stokes equations for the carrier gas is
reached, particles are introduced into the simulation procedure, and the motion of particles
is calculated simultaneously with ongoing solving the equations for the carrier gas. Initially,
particles are placed in a cloud of finite width h (see Fig. 1), the position of each particle within
a cloud is random, and it is chosen from the equiprobable distribution. All particles have the
same velocity V∞. The joint gas–particle flow calculation over a time step ∆t consists of two
stages. At first, the Navier–Stokes equations are solved from tn to tn+1 = tn + ∆t as it is
described above, and then the equations (5) for every particle are solved by the modified Euler
method. Write the equations (5) in the compact form

dX

dt
= U(X), where X =


mpup

mpvp

Jpωp

xp

yp

 , U(X) =


fDx + fMx

fDy + fMy

lp
up

vp

 . (25)

The particle drag force fD, the lift Magnus force fM, and the torque lp (in a 2D-flow the torque
lp has only one non-zero component which is normal to the plane (x, y), it is denoted by lp) are
determined by relations (6)–(9).

Numerical integration of the equation (25) with respect to time from tn to tn+1 = tn + ∆t is
carried out as follows:

X∗ = Xn + ∆tU(Xn), Xn+1 = Xn + ∆t(U(Xn) + U(X∗))/2. (26)

This is a predictor-corrector method of the second order.
The total number of particles in a cloud is varied from 50,000 to 5,000,000.

4 RESULTS OF COMPUTATIONAL SIMULATION AND DISCUSSION

4.1 Input data

Parameters of the cascades and flow properties are taken in calculations close to those which
are typical for an inlet compressor of a turbojet engine. The chord of airfoils is equal to l = 10
cm, the cascade step s = 7 cm, the angle of attack β = 45◦, the profile of blades is NACA0012,
the main (undisturbed) flow velocity V∞ = 200 m/s, the cascade velocity Vr = 150 m/s, the
carrier gas is air (< = 287 J/(kg K), cp/cV = 1.4; coefficients in the Sutherlend formula (4):
µ0 = 1.71 · 10−5 N·s/m2, T0 = 288 K, S0 = 117 K), the Prandtl number Pr = 0.72, the
flow density and temperature ρ∞ = 1.21 kg/m3 and T∞ = 288 K. These values correspond to
the Mach number M∞ = 0.59. The particle and blade materials are silicon dioxide and steel,
respectively.
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4.2 Results for the carrier gas

In parallel with numerical solving the Navier–Stokes equations we also solved the Euler
equations using the same grids and the same finite volume method but with ”viscous” terms
equal to zero. The main aim here was to understand the role of viscous effects in forming
the flow structure and also to estimate ”a numerical scheme viscosity”. Comparison of instant
fields of different gas properties are shown in Figs. 6, 7 and 8. As is clearly seen from Fig.
6, (a), in the case of the Euler equations we have nearly homogeneous entropy field that is,
on the one hand, in good agreement with the theoretical statement that the entropy in a flow
of ideal gas remains constant, and on the other hand, testifies that the numerical method has
rather low ”scheme viscosity”. In the field of a viscous gas (Fig. 6, (b)) we see spots with
much higher entropy than in the main stream. These inhomogeneities arise due to the entropy
production in boundary layers at the blade surfaces and inside separated eddies in the vortex
wakes behind blades. Eddies generate pressure waves in the flow field (Fig. 7, (a)). These
waves are absent in the solution of the Euler equations (Fig.7, (b)). Fields of the Mach number
in both cases (Fig. 8) correspond in structure to those for the entropy function (Fig. 6). As is
seen, flow is subsonic everywhere in the reference system connected with the ”stator” cascade.
In the outflow boundary of the calculation domain (right boundary of the stationary grid block),
the gas velocity, the density, and the temperature reach nearly constant values: V = 115 m/s,
ρ = 1.56 kg/m3, T = 304 K. These parameters correspond to the Mach number M = 0.33.

Figure 6: Instant field of the entropy function ϑ = p/ργ : (a) Euler equations; (b) Navier–Stokes equations.
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Figure 7: Instant field of the pressure: (a) Euler equations; (b) Navier–Stokes equations.

Figure 8: Instant field of the Mach number: (a) Euler equations; (b) Navier–Stokes equations.
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Figure 9: Mach number in front of a stator airfoil as a function of time: (a) Euler equations; (b) Navier–Stokes
equations

Computational experiments have shown that numerical solution of the Euler equations reaches
with time a strictly periodic behaviour that is illustrated by Fig. 9, (a). In the figure τ = t/ts,
where ts = s/Vr ( ts = 0.47 · 10−3 s for the given values of s and Vr ). The period includes
three maximums and three minimums. For the Navier-Stokes equations, the time-dependent
character of a solution is illustrated by Fig. 9, (b). It is seen that in this case a time-periodic
solution is absent. Such a situation is connected with two independent periodic in time pro-
cesses: separation of eddies from blades, and motion of spatially periodic rotor blades relative
to the stator blades with the same spatial period. The first process is determined by the Reynolds
number of flow around a blade, whereas the second one is determined by the velocity Vr and
the cascade step s. If the periods of both processes are not multiple, their interaction can result
in ”stochastic” behaviour of flow parameters with time.

4.3 Results for the particle-phase

For visualization of the particle-phase flow we consider a particle cloud of finite width h
equal to the airfoil chord l (see Fig. 1). Particles in the cloud were distributed in space randomly
by the uniform distribution. All the results given below in this Subsection refer to the carrier
gas flow field computed from the Navier–Stokes equations. Instant particle flow patterns at the
same moment for different values of the particle radius (in the case of monosized particles)
and the most probable particle radius (in the case of Log-normally distributed particles in an
undisturbed flow) are shown in Figs. 10–12. Particle radiuses rp = 5 µm, 10 µm and 20 µm
correspond to the Stokes numbers Stk = 1.70, 6.82 and 27.28, respectively. The Stokes number
is defined as the ratio of the particle dynamic relaxation length (with the use of the Stokes law
for a particle drag force) to the characteristic length in the flow l: Stk = 2ρpr

2
pV∞/(9µ∞l).

In all figures, particles not collided with blades, collided only with ”rotor” blades, collided
only with ”stator” blades, and with both ”rotor” and ”stator” blades are marked by blue, green,
red and black colour, respectively.

An initially uniform particle cloud is distorted strongly in the flow, and the distribution of
particles in space becomes substantially non-uniform. A redistribution of particles occurs by
the action of non-uniform flow field of the carrier gas and by their collisions with blades. For
small particles (Stk < 10) the effect of boundary layers and vortex wakes is of great importance
in the process of redistribution, whereas for large particles (Stk > 20) this effect is negligible,
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Figure 10: Instant patterns of (a) monosized and (b) polydisperse particles: rp = rpm = 5 µm.

Figure 11: Instant patterns of (a) monosized and (b) polydisperse particles: rp = rpm = 10 µm.
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Figure 12: Instant patterns of (a) monosized and (b) polydisperse particles: rp = rpm = 20 µm.

but the particle-blade collisions play a key role.
The particle distribution in size results in ”smearing” the particle concentration field. The

physical reason of this effect is mixing of particles of different sizes in a flow.

5 CONCLUSION

The present investigation of dusty gas flow through a set ”rotor–stator” of 2D-cascades has
shown that dispersed particles are redistributed strongly in the flow. The behaviour of the par-
ticle phase depends substantially on the particle size. Motion of small particles is governed
mainly by the carrier gas flow which is rather complicated due to separation of eddies from
blades with forming the vortex wakes. Large particles colliding with the blades rebound from
them and the rebounded particles can collide later with both, nearest and far blades, that makes
the particle phase flow more complicated. In the case of monosized particles, the narrow layers
with high particle concentration arise. Mixing of particles of different sizes results in smearing
of these layers. This allow us to conclude that in actual dusty gas flows the erosive damage from
the particles’ impacts is less that it can be predicted by the classical two-phase flow theory.
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APPENDIX
We would like to pay attention to one problem which in the commonly accepted theory

is thought to be solved and closed. The case in point is the mechanism of flow separation
from the body with a smooth contour and following development of a vortex wake. Such a
phenomenon is a subject of the boundary layer theory (see, e.g., the well-known monograph
”Boundary Layer Theory” by H. Shlihting) which explains the separation by modification of
a velocity profile in a viscous boundary layer at the body surface. However, our calculations
clearly show that separation from a smooth body can be not connected with the boundary layer
effects. Three instant flow patterns past a circular cylinder are given below in Fig. 13. All
they are obtained by computational simulation with the use of the same very fine grid. The first
pattern is obtained by numerical solving the Euler (inviscid) equations. The second one refers
to the Navier–Stokes equations but without non-sleep conditions at the cylinder surface. The
last pattern corresponds to the Navier–Stokes equations and traditional non-sleep conditions.
As is seen, all these patterns are in close agreement. In all cases we observe the flow separation
and the development of the vortex street. The Strukhal number in all cases is practically the
same. In our opinion, this result is an evidence of that in some situations the flow separation
and the structure of the vortex wake can be calculated without taking the boundary layer effects
into account.

Figure 13: Structures of the vortex wake behind a cylinder calculated by using three different flow models.

REFERENCES

[1] W. Tabakoff and A. Hamed, Aerodynamic effect on erosion in turbomachinery, Proc.
JSME and ASME 1977 Joint Gas Turbine Congress. Tokyo, Japan, 574–581 (1977).

19



D.A. Romanyuk and Yu.M. Tsirkunov

[2] G. Yu. Stepanov, Hydrodynamics of cascades of turbomachines, FIZMATLIT, Moscow
(1962). [in Russian]

[3] M. F. Hussein and W. Tabakoff, Calculation of particle trajectories in a stationary two-
dimensional cascade, Dept. of Aero. Engng. TR 72-27, University of Cincinnati, AD-
764267 (1972).

[4] M. F. Hussein and W. Tabakoff, Dynamic behavior of solid particles suspended by polluted
flow in a turbine cascade, J. Aircraft, 10, (7), 434–440 (1973).

[5] Yu. M. Tsirkunov, Gas-particle flows around bodies – key problems, modeling and numer-
ical analysis, Proc. Fourth International Conference on Multiphase Flow, ICMF’2001,
E. Michaelides Ed., New Orleans, LA, USA, Paper n◦607 (2001).

[6] D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and
Heat Transfer, Hemisphere Publ. Corp., New York (1984).

[7] Ch. B. Henderson, Drag coefficient of spheres in continuum and rarefied flows, AIAA J.,
14, 707–708 (1976).

[8] S. I. Rubinow and J. B. Keller, The transverse force on a spinning sphere moving in a
viscous fluid, J. Fluid Mech., 11, 447–459 (1961).
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