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Abstract. The paper deals with the simulation of vehicular traffic flows in urban
streets and at motorway. Original 2D macro- and microscopic models of multilane
traffic are developed to predict flows for the real road geometry. The macroscopic model
of synchronized traffic flow uses the kinetic approach by analogy with the quasi-gas-
dynamic (QGD) system of equations. The microscopic model is based on the cellular
automata theory. Test predictions demonstrate good agreement of the models in both
qualitative and quantitative sense.
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1 INTRODUCTION
In the recent decades the problem of traffic congestion is becoming increasingly

urgent. Vehicles often move slower than pedestrians during rush hours. Improving the
traffic situations generally involves costly measures and is mostly inefficient. The
mathematical modeling is the most economical tool for the simulation of traffic flows
which develops strenuously nowadays. There are two basic types of the traffic flow
models1.

The “macroscopic” or hydrodynamical model treats traffic flow as slightly
compressible fluid2 and uses the continuum approach. This approach is applicable for
long road intervals (much greater than vehicle sizes) with congested enough traffic, when
all  drivers  have  to  follow  the  similar  strategy.  The  notions  of  the  flow  density  as  the
vehicle number per length unit per lane and the flow velocity are introduced. Similar to
the gas dynamics, partial differential equations are derived to account for the mass and
momentum conservation laws. These equations also include additional terms describing
the human will.

In the so-called “microscopic” models vehicles are treated as separate particles,
which interact according to certain laws3,4,5 ensuring  safety  traffic,  possibility  of
acceleration, deceleration, etc. Each vehicle has its own speed and destination point.
This model type is mostly effective for modeling relatively short road intervals
comparable with vehicle sizes, for example, while modeling traffic on crossroads.

Most  of  the  present  models  are  one-dimensional  and  do  not  account  for  parameter
distribution across the road. The proposed paper deals with the development of original
2D macro- and microscopic models of multilane vehicular traffic to predict flows for the
real road geometry.

In6,7 the 2D multilane macroscopic traffic flow model was developed on the basis of
the quasi-gas-dynamic (QGD) system of equations8. The main idea is that it makes no
sense to consider scales less than the minimal reference length. For traffic flows the
reference length equals the distance between vehicles for the given velocity. Contrary to
the earlier traffic flow models, a variable transverse velocity is introduced. The present
research generalizes the model to the case of multiphase flows, while a phase is a group
of vehicles with identical features, i.e. the type of vehicle (car or lorry), destination, the
speed limit.

The paper presents also an original 2D microscopic model based on the cellular
automata theory9. Such models are rather flexible owing to the possibility of
implementing any driving strategy without substantial algorithmic costs. As well as the
macroscopic model, this model is modified to simulate heterogeneous traffic flows.

The 2D models described above are compared by a large number of test predictions
for situations when both models are applicable. The results obtained demonstrated good
agreement of the models in both qualitative and quantitative sense.

2 2D MACROSCOPIC TRAFFIC FLOW MODEL
Macroscopic traffic flow models describe synchronized traffic when the speeds are far

from  the  free  flow  speed.  Under  these  conditions  it  is  possible  to  use  the  continuum
approach on long intervals of the road and derive equations similar to the gas dynamics
equations. The notions of the density ρ as the quantity of vehicles per lane in a distance
unit, the velocity u as the average speed of vehicles and the flux q=ρu as the function of
the density and velocity are employed.

When deriving the model, the vehicle ability to accelerate or decelerate is taken into
account. The accelerating/decelerating force is:
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where uf  is the speed of the free motion of vehicles, ρjam is the density, at which the
vehicles stop moving (“traffic jam”), and the relaxation time is
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t0 and r are the phenomenological constants, the speed limit is: max0 u u£ £ where umax is
the maximum allowed speed limit.

The analogue of pressure shows the density gradient influencing the traffic flow
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where λx and βx are phenomenological constants.
Traffic flow models are conventionally one-dimensional, describing vehicles moving

in one lane. To take into account the neighboring lanes (multilane traffic), some models
can, for instance, use the corresponding sources on the right-hand sides of the
equations1. The challenge of developing a fully two-dimensional model is that it is
impossible to generalize a one-dimensional model for the two-dimensional case in the
usual way, since motions along and across the road are not equivalent. Earlier in6,7 the
model providing the possibility of the transverse motion was proposed. In this model
vehicles can move to the lane with a faster speed or a lower density while driving
towards their destination. Then the transverse velocity v is described by the sum of the
following terms:

movement to the lane with a higher speed — u u
uv k
y
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;
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Here ku,  kρ,  kdes are phenomenological constants, (xdes,  ydes) — the destination
coordinates.

In the final form the 2D system of equations describing traffic flows was obtained by
analogy  with  the  QGD  system  of  equations8.  One  of  the  criteria  of  gas  flows  is  the
Knudsen number Kn that is the ratio between the reference length of the medium (the
free path length) and the reference length of the flow. In gas dynamics 3Kn 10-£ . For
traffic flow under the free path length the average distance between the vehicles is
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assumed  therefore  Kn≈0.1.  The  QGD  system  works  well  within  the  wide  range  of
Knudsen number values, which is the reason to use it for derivation of the traffic flow
model.

One  of  the  basic  assumptions  for  the  QGD  system  is  existence  of  additional  mass
flux  that  ensures  a  smooth  solution  at  the  reference  length  of  the  medium.  For  traffic
flows, the reference lengths along and across the road are different. Along the road, it is
the distance δ(u) between the vehicles for the velocity u, and the reference length across
the road is the width of one lane.

The reference time τ is also introduced in the continuum approach. The time interval
of crossing the given point of the road by several vehicles can be treated as such a time.

( ) 1,x y

u
u v

d
t t» » (6)

Note that τ is rather conservative and does not change significantly at different
velocities. For simplification, τx and τy can be treated as constants.

An additional flux Wx is introduced on the right-hand side of the continuity equation
to ensure smoothing along the road
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The diffusion flux associated with the transverse motion of vehicles is
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There are smoothing terms in the momentum equation as well.
Generalizing the above assumptions, the following system of equations for the traffic
flow dynamics is obtained:
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As the model possesses a great number of coefficients and parameters, which can be
chosen  arbitrarily,  the  problem  of  the  model  calibration  evolves.  Furthermore,  it  is
important to take into account the anisotropy and statistical and experimental data. The
following values of parameters were used to perform calculations:
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The model described above account for homogeneous traffic flows, which means
that vehicles differ in their coordinates only. However in reality there are vehicles of
different types (for example, passenger cars or lorries) on roads. They can differ not
only in their characteristics (the free flow speed, the relaxation time) but also in their
behaviour on roads (for example, lorry can take aim at the right lane). Vehicles have got
different routes and different destinations. As a result, a homogeneous flow is initially
divided into a number of components in a complicated manner. For simulation of such
compound statistically-heterogeneous flows the concept of multiphase traffic is
introduced, where under a phase a set of vehicles with some identical features is
assumed. The proposed model has been generalized to the multiphase case. Equations
(9)-(11) are modified taking into account different characteristics of phases: each phase
has got its own density, velocity, transverse velocity, destination etc. Consequently now
the model comprises a set of equations (the continuity equation, the momentum
equation and the transverse velocity equation) for each phase.

3 2D MICROSCOPIC TRAFFIC FLOW MODEL
The proposed microscopic model is based on the cellular automata (CA) theory9. CA

are idealization of the physical system with discrete space and time, each of interacting
units of the system has got a finite number of discrete states. For the description of
vehicular traffic the CA concept is being developed since 1980s.

In the classical approach, a lane is represented by a one-dimensional lattice. Each cell
of the lattice can be either empty or occupied by one particle, which represents a
vehicle. Vehicles can skip from one cell to another (which must be empty) in one
direction and cannot overtake one another. Since space and time are quantified, the
speed and the acceleration take on only discrete values. In such models particle
movement is regulated by special laws of the cell state update incorporating stochastic
observations. The update rules are identical for all cells and are applied to all cells in
parallel. Therefore for modelling parallel computer codes can be developed to run on
high-performance multiprocessors.

The CA rules feature the property of locality. In other words, to obtain the current
state of the cell, it is necessary to know only the states of some of its neighbours called
the cell vicinity. The cell length equals the length of the road interval occupied by a
vehicle in the traffic jam that is the length of a vehicle and the distance between
neighbouring vehicles. Usually it is 7.5 m. The speed denotes how many cells the
vehicle overpasses during a time step. The cell length, the maximal speed and the time
step describe the model completely.

One of the well-known CA-based microscopic model is the Nagel-Schreckenberg
model2. Its original variant is one-dimensional. In this model the speed v of each vehicle
can take one of the integer values v = 0, 1,...,vmax.

If xn and vn are  the  position  and  the  speed  of  the  current n-th vehicle, dn is the
distance between the current vehicle and the vehicle in front of it, then at each time step
t ® t+1 the algorithm of the vehicle arrangement update consists of the next stages:

1. Acceleration vn ® min(vn+1, vmax)
2. Deceleration vn® min(vn, dn-1)
3. Randomization vn® max(vn-1, 0) with some probability
4. Vehicle movement xn ® xn +vn

The  first  stage  reflects  the  common  tendency  of  all  drivers  to  move  as  fast  as
possible, the second one guarantees avoiding collisions, the third one takes into account
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randomness in driver behavior, and the skip itself takes place on the fourth stage – each
vehicle is moved forward according to its new velocity.

The Nagel-Schreckenberg model is a minimal model because it reproduces only
primary features of real traffic flows. The present research takes this model as a basis to
describe movements on relatively short road intervals with a high probability of traffic
congestion.

Aiming at simulation of multilane traffic, the authors have generalized the above
model to the two-dimensional case. In this case the computational domain is the 2D
lattice. The number of cells in the transverse direction corresponds to the number of
lanes. Such a model allows vehicles to change lanes and to overtake one another. The
algorithm of the cell state update is formed by two components:

1) lane change (if it is necessary and possible);
2) movement along the road by the rules of one-lane traffic (stages 1-4 above).
Change of lanes should happen during a time step. If there are more than two lanes in

one direction, a conflict can occur when two vehicles from extreme lanes tend to the
inner lane and try to occupy one and the same cell. The rule like the next one could help
to  resolve  such  a  situation:  vehicles  change  to  the  right  only  on  even  time  steps  and
change to the left on odd steps.

In general reasons and conditions for changing lanes are as follows:
1) the vehicle is located in the domain where lane change is allowed;
2) lane change leads to increase of the speed (decrease of the density) or is

necessary to reach the destination (to achieve the object);
3) the target cell is empty;
4) the safety condition is satisfied - on the target lane the distance behind the vehicle

is greater or equal to vmax, in front of the vehicle it is greater or equal to vn, then
the change takes place with some probability.

The algorithm proposed in the present work ensures the possibility to achieve the
destination. For example, the side road exit or the appointed turning at traffic lights can
be  assumed  as  destinations  in  multilane  traffic.  In  any  case,  starting  from  the  certain
time moment vehicles aim at the target lane and ignore the density and velocity values
on it. However drivers cannot disregard the safety condition. If the destination is not far,
vehicles change to the target lane at the first opportunity and do not quit it anymore. The
situation is possible when a driver is not able to turn to the required lane up to the
destination achievement. In such cases the vehicle has to stop near by the target lane and
to wait for the opportunity of wedging itself in the lane. In doing so, it can disable
forward movement of other vehicles on the current lane.

General considerations help to evaluate the distance to the destination at which
drivers start trying to change to the target lane. As a matter of fact, this distance depends
on the flow density. In different problems it is 75-150 m. Thus the developed model
keeps the destination parameter for each vehicle. Vehicle destinations are obligatory,
they cannot be modified.

The  microscopic  model  was  generalized  to  the  multiphase  traffic  flow  too.  In  this
case the algorithm of cell state update includes the initial vehicle destination control, the
other stages are fulfilled according to this destination. Each phase can have its own vmax.

4 TEST PREDICTIONS
Figures 1, 2 illustrate the first test problem – the quasi-one-dimensional traffic flow.



Boris N. Chetverushkin, Natalia G. Churbanova, Ilya R. Furmanov and Marina A. Trapeznikova

7

0 2 4 6

ro

0

20

40

60

80

Figure 1: Time evolution of the high density step
(profiles of the density along the road) obtained via the macroscopic model

Figure 2: Time evolution of the high density step obtained via
the microscopic model

The road interval of 7500 m length is under consideration. The traffic within some
part of this interval is strongly congested. Figures 1 and 2 show the time evolution of
the high density “step” obtained by the macroscopic and microscopic models
respectively. The density in the microscopic case is the implication of averaging
discrete values namely the number of cars per a length unit. Therefore graphic lines in
Figure 2 have the oscillating behaviour. Nevertheless one can see the qualitative
agreement of results. The initial “step” is red coloured. Then the step is moving
backward until its density falls below some certain value. The propagation of such
density jumps often leads to the jam.

The second test problem is the vehicle movement on the road with local widening. The
corresponding road configuration is shown in Figure 3.

1
2

3 Target
for 3rd lane

Figure 3: Statement of the “local widening” problem
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Figure 4 demonstrates the density field obtained with the use of the macroscopic
model. The red colour corresponds to the maximal density while the minimal density is
blue. The density of vehicles falls at the wide part of the road but when the traffic flow
shrinks back from three to two lanes, the speed falls significantly. Thus, the total time
required to pass the given road interval grows as compared with the road without
widening.

Figure 4: The density field obtained via the macroscopic model

The same test problem has been solved using the microscopic model. The average
density is depicted in Figure 5.

Figure 5: The traffic density obtained via the microscopic model

One can observe the same tendency: the maximal density is located at the end of
widening. Moreover the density at the road exit exceeds the enter density.

To validate multiphase variants of the models, the following test problem on
heterogeneous flows has been considered. There are two types of vehicles differing in
final destinations: phase 0 (it is 1/3 of all vehicles) is formed by the vehicles turning to
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the  right  at  the  side  exit,  phase  1  (correspondingly  2/3  of  all  vehicles)  is  the  vehicles
moving forward along the road (see Figure 6).

3
2
1

3
2
1

Phase 1: Straight-going vehicles

Phase 0: Right-turning vehicles

Target for
zero phase

2400
veh/hour

Figure 6: Statement of the multiphase flow problem

The comparison of results obtained with macro- and microscopic models is
illustrated by Figures 7 and 8. In those one can see that over some interval phase 0
displaces phase 1 out of the first lane, in front of the exit the density jump occurs in both
phases, and past the exit phase 0 vanishes from the road, and vehicles of phase 1 are
distributed uniformly throughout the multilane road.

Figure 7: The density field obtained via the multiphase macroscopic model
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Figure 8: The traffic density obtained via the multiphase microscopic model:
Red line – right-turning vehicles
Blue line – straight-going vehicles
Green line – the total amount of vehicles

The final problem to be considered is the simulation of traffic lights regimes on a
crossroad using the above microscopic model. The problem consists in obtaining the
optimal traffic lights regime namely the signal durations to ensure the minimal time of
stay on the crossroad for all traffic participants. Figure 9 illustrates the problem.

Figure 9: Problem statement of traffic lights on a crossroad

The  lattice  consists  of  four  crossing  roads  each  of  them  has  four  lanes:  two  in
forward and two in reverse directions. The traffic flows are multiphase, incoming flow
rates are non-uniform. The vehicle colour indicates its destination – to move forward or



Boris N. Chetverushkin, Natalia G. Churbanova, Ilya R. Furmanov and Marina A. Trapeznikova

11

to turn to the right or to the left. Figure 10 shows incoming flow rates and allowed
directions of movement on the crossroad.

Figure 10: Incoming flow rates and allowed directions on the crossroad

The traffic lights has four operating modes which determine the order of traffic on
the crossroad at the given time moment (see Figure 11). Each mode has its own duration
coinciding or not with other ones. All data correspond to some real crossroad.

Figure 11: The traffic lights operating modes – allowed directions on the crossroad

Vehicles have more complicate behavior in the vicinity of the crossroad in
comparison with straight intervals of the road. If the vehicle intends to turn it must
decrease the speed till to allowed for turning. The vehicle must also take into account
positions of vehicles in neighbour lanes and in other directions.

Table 1 demonstrates results of predictions. Varying mode durations one can
increase the crossroad capacity i.e. the number of vehicles left the crossroad for 10
minutes. Obtained results allow to conclude the follows. Equal mode durations do not
provide the best capacity (see row 2). Mode 1 allows passing over the crossroad by
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vehicles with the maximal incoming flow rate. But excessive increase of the Mode 1
duration do not lead to the capacity increase (compare rows 2 and 4).

Mode 1
Duration, s

Mode 2
Duration, s

Mode 3
Duration, s

Mode 4
Duration, s

Capacity of
the crossroad

1 90 90 45 45 490

2 60 60 60 60 545

3 90 60 90 60 545

4 45 45 60 60 575

5 45 45 90 90 575

Table 1: The traffic lights operating modes – allowed directions on the crossroad

5 CONCLUSION
The 2D micro- and macroscopic models have been developed to describe multilane

homo- and heterogeneous traffic flows. The models are applicable in distinct cases and
can be used for simulation of both congested and rarefied flow.

Predictions of several test problems were performed to validate the both models.
Traffic flows on a signal-controlled crossroad were simulated using data on real traffic
lights regimes to optimize them.

The tools developed will be implemented in program packages to be widely used in
various engineering applications, including recommendations for the optimal motorway
construction, road situation prediction and traffic flow control.
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