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Abstract. On the basis of the kinetic approach a new model of porous media flows is
developed taking into consideration the fluid compressibility, capillary and gravity
forces. The continuity equation is modified taking into account the minimal scales of
averaging on space and on time, as a result the regularizing term and the time
derivation of the second order with small parameters are present in the equation. For
approximation the three-level explicit difference scheme with a mild stability condition
is proposed. The model is generalized to the case of two-phase fluid flow. A
computational algorithm of the explicit type is developed to achieve efficient
implementation on high-performance computer systems with hybrid architectures.
Computations of test problems on fluid inflow to oil-producing wells and on
contaminant infiltration into the soil have been executed to validate the model.
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1 INTRODUCTION
The work deals with the development of a new approach for simulation of

multiphase fluid flows in porous media. Computations of such flows are extremely
important while developing technologies of oil recovery, constructing hydraulic
structures, solving ecological problems aimed at prevention of the soil and groundwater
contamination by petroleum products etc. It is well known that numerical simulation of
these large-scale processes is very time-consuming and practically impossible without
the use of high-performance computer systems. On the one hand modern
supercomputers give unique opportunities for solving scientific and industrial problems
on the other hand hybrid architectures of these computers cause great difficulties in their
efficient employment1. These difficulties reflect fundamental problems of the software
development for computer systems with the superhigh performance2.  At  present
supercomputers combine shared and distributed memory, multicore CPUs and different
accelerators3 (GPU and EPLD). Therefore the necessity of new general-purpose
computational approaches with high accuracy and logical simplicity arises to exploit
hybrid systems most efficiently.

One of the algorithms of a simple structure is explicit finite-difference schemes.
Logical simplicity of explicit schemes harmonizes well with such advanced techniques
as the dynamic adaptation of computational meshes. However explicit schemes have got
rather a strong time-step restriction. This restriction becomes crucial while increasing
the number of processor nodes and decreasing the step of the spatial mesh. In the
present paper a new approach to porous medium flow simulation is proposed assuming
implementation by explicit different schemes and allowing improvement of the scheme
stability.

In many previous papers4,5,6 the authors investigated multiphase porous media flows
at the assumption that fluids were incompressible. The corresponding traditional
governing models7,8,9 and different variants of IMPES method7 for their implementation
were used. Unfortunately these algorithms were not quite economical and possessed
moderate (not very high) parallelization efficiency due to the necessity of solving the
elliptic pressure equation in the framework of IMPES method. The model of another
type was constructed by the authors10,11 on the basis of the kinetic approach at
assumptions that fluids were slightly compressible. Nowadays kinetic schemes such as
lattice Boltzmann schemes12 and kinetically-consistent finite difference (KCFD)
schemes13 are the most perspective algorithms in hydro- and gas dynamics. The main
idea used at deriving KCFD schemes and the related Quasi-Gas Dynamic (QGD)
system of equations consists in the next: there is no sense to consider scales less than
the minimal reference length. This principle is extended to porous media flows where
the reference length equals approximately to a hundred rock grains. At that the mass
conservation equation includes an additional diffusion term with a small parameter in
the right-hand side what provides new computational opportunities. Test predictions of
single-phase flows validated the model10,11,13.

In the present paper the continuity equation is transformed from the parabolic to
hyperbolic type in order to provide the high solution accuracy at the sufficient scheme
stability. For the first time the new model is generalized to the case of two-phase fluid
flow taking into account the capillary and gravity forces. A fully explicit algorithm is
developed for the model implementation. Computations of test problems on fluid inflow
to oil-producing wells and also on contaminant infiltration from the earth surface into
the soil have been performed using both kinetic and traditional approaches. Good
agreement of results has been observed while the kinetic approach allowed to increase
the time step and to reduce significantly computational costs.
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2 SINGLE FLUID FLOW IN A POROUS MEDIUM

2.1 Hyperbolic model
The  classical  model  of  single  fluid  flow  in  a  porous  medium  at  the  assumption  of

slight compressibility of the fluid7 is written as follows:

div 0
t

u (1)

= - gradK pu (2)

0 0p p (3)

Here is the density, p is the pressure, u is the Darcy velocity, K is the absolute
permeability,  is the dynamic viscosity,  is the compressibility factor, p0 and 0 are
constant reference values of the pressure and the density.

For many problems of continuum mechanics there are some minimal sizes (so-called
reference scales) which act as the lower bounds for the description details. In other
words, it makes no sense to consider sizes smaller than the minimal reference scale.
This principle is a cornerstone in deriving KCFD schemes and the related QGD system
in gas dynamics13. The free path length of a molecule is such a scale in gas dynamics.

For porous media flows the minimal reference scale l is a distance of the order of a
hundred rock grain sizes. If to take into consideration distances less than l it would be
necessary to describe fluid flows with the account of the real geometry of rock grains.
But the experimental Darcy law is valid for averages and follows directly from the
equation of motion in the Navier-Stokes system averaged over the given length l. Using
this reference length and the analogy with KCFD schemes the modified model has been
obtained with the next continuity equation10:

div div grad
2
l c

t
u (4)

where c is the magnitude of the order of the sound speed in fluid. The additional
diffusion term in the right-hand side guarantees solution smoothing on length l.

In contrast to equation (1) equation (4) can be approximated by explicit schemes with
central differences for discretization of the convective term div u 10,11. In some cases of
porous media flow modeling employment of the central-difference approximation is
very convenient. At the same time usage of explicit schemes for equation (4) as well as
for initial equation (1) leads to the strong time-step restriction:

2t h (5)

Let us consider the further development of the model (4), (2), (3). The difference
approximation of the time derivation can be presented as given below (j is the time level
number):

1 2
2

22

j j t O t
t t t

(6)

If to base on this formulation equation (4) can be replaced by the hyperbolic equation
2

2 div div grad
2
l c

t t
u (7)
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with an unknown else parameter  evaluated as the minimal reference time. In gas
dynamics the time interval between molecule collisions is taken as such a scale. This
parameter can be also interpreted as the time for inner equilibrium establishing in the
volume with the reference size l.

The sound speed in fluid is much greater than the Darcy velocity. Then at the given
step of the spatial discretization h the minimal time scale has the next order of
magnitude:

h c (8)

For computations a value depending linearly on h can be chosen as  .

The additional term
2

2t
 in equation (7) by the order of magnitude is much smaller

than the term
t

. Taking into account (8) one can get the following evaluation:

2

2
h

t t L
(9)

where L is the reference size of the problem.

2.2 Three-level explicit difference scheme
In this subsection let us consider the 1D case for simplicity. Substituting (2) and (3)

into equation (7) one can rewrite this equation schematically in the model form:
2 2

2 2t t x
(10)

The three-level difference scheme for its approximation is as follows:
1 1 1 1

1 1
2 2

2 2
2

j j j j j j j j
i i i i i i i i

t t h
(11)

Under the condition
2 2t h (12)

scheme (11) changes into the absolutely stable Duffort-Frankel scheme14. It is known
that the accuracy of solutions obtained with the use of the Duffort-Frankel scheme in
many cases is unsatisfactory. However in the present research parameter   (8) is chosen
from the special considerations: the additional term with the second time derivation in
(7) causes minimal changes in the solution of (4). Combination of (8) and (12) results in
the stability condition of the three-level scheme for solving equation (7):

3
2t h (13)

This condition is more acceptable in comparison with the classical restriction (5).
Advantages of the mild condition (13) become particularly evident on the finest
computational meshes which are applicable while implementing algorithms on
multiprocessor/multicore computer systems.

Equation (7) can be approximated directly in its initial form by the conditionally
stable three-level explicit scheme of the second order of approximation on time and on
space using central differences for the convective term discretization:
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1 1 1 1
1 1

2

2
2 2 2

j j jj j j j j
i i i i i i i

x
x

u u l c
t t x

(14)

where
2

j

x
x

l c is the standard difference approximation14 of the term div grad
2
l c .

Or  with  the  account  of  (2)-(3)  the  next  scheme  for  equation  (7)  can  be  presented
(compare with (11)):

1 1 1 1

2

2
2 2

jj j j j j
ji i i i i

i x
x

K l c
t t

(15)

2.3 Test predictions
First of all the plane-radial fluid flow to a single vertical producing well (see Figure

1a) was predicted to validate the modified hyperbolic model (7), (2)-(3). The well is
centered at the origin, rwell is the well radius, Rcontour is the radius of the feeding contour.
Streamlines are radial and directed to the well. The given test problem can be
formulated   in  the polar   coordinates   as  a  one-dimensional  problem  on  interval
[rwell, Rcontour] 10,11,13 in view of the axial symmetry. Constant values of the pressure and
the density are set on the well and the contour. In computations the next values were
used:

6 7
2 2 3 3

2 3
4 8 7 5

2

10 , 10 , 1 , 1.009

0.5 , 10 , 10 , 10 , 10

well contour well contour

well contour

g g g gp p
cm s cm s cm cm

cm K cm s cmr cm R cm c
s g s

(16)

The analytical formula for the steady-state plane-radial flow around a well is known:

ln
ln

contour well
well

contour well well

p p rp p
R r r

(17)

The subscripts well and contour indicate whether values of the corresponding quantities
are taken on the well or on the contour.

(a) (b)

Figure 1: Plane-radial flow to a well – the problem statement (a) and the obtained pressure (b).
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Let us compare the exact solution (17) with results obtained via the classical model
(1)-(3) (Model I), via the modified model with the regularizing diffusion term (4), (2)-
(3) (Model II) and via the new hyperbolic model (7), (2)-(3) (Model III). Figure 1b
reflects the pressure and illustrates this comparison. All the models were transformed
into the polar coordinates. At numerical implementations by explicit schemes
convective terms of all these models were approximated by central differences like in
(14). Model I gives oscillations in the solution at any time step (Figure 1b, line 2). The
use of Model II as well as Model III leads to smooth solutions which coincide one with
another (Figure 1b, line 3) and with the exact solution (Figure 1b, line 1). In these
predictions  the  next  values  of  small  parameters  were  chosen:  the  minimal  reference
length 410l cm  and the minimal reference time 2 s . However to comply with the
stability condition the highest possible time step of the two-level scheme for Model II
equals to 42 10t s  while the three-level scheme for Model III ensures the much
greater time step 22 10t s  at one and the same step of the spatial grid.

As the second example the similar test problem was considered in the two-
dimensional geometry in the square domain where the well was placed in the center and
the boundaries served as the feeding contour (see Figure 2a). Figure 2b shows the
pressure profiles across the well computed on the basis of Model I (the oscillating
curve) and on the basis of Model III (the smooth solution). Thus the smoothing effect of
the regularizing term in the right-hand side of (7) is demonstrated visually.

(a) (b)

Figure 2: 2D flow to a well – the problem statement (a) and the obtained pressure profiles (b).

Here noticeable increase of the stability threshold is observed at employment of
Model III. Table 1 cites data obtained for Models II and III at different steps of the
spatial grid when 510l cm . It is follows from this table that for the three-level scheme

the time step
3

2t h  is really valid.

h, cm 0.2 0.5 1.0
Two-level scheme: t, s 0.008 0.05 0.2
Three-level scheme: t, s 0.09 0.35 1.0
, s 0.66 1.59 3.26

Table 1: Dependence of the time step from the spatial step for Models II and III.
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3 TWO-PHASE FLUID FLOW IN A POROUS MEDIUM

3.1 The governing system of equations
Practically important applications concerned with the porous media flow simulation

usually require considering multiphase fluids. For example, ecological problems aimed
at prevention of the soil and groundwater contamination by different pollutants assume
simulation of the three-phase flow of water, soil air and a so-called Non-Aqueous Phase
Liquid (NAPL)9 – it can be petrol or diesel oil or tetrachloroethylene etc. Besides that
the capillary and gravity forces should be taking into account.

In the present paper the case of two-phase fluid flow is investigated. Generalizing
results of Section 2 the next system of equations can be written (the subscript =w,  n
indicates water or NAPL correspondingly):

div div grad
2

S l cm q S
t

u (18)

gradwk S
K pu g (19)

0 01 p p (20)

1w nS S (21)

n w c wp p p S (22)

where m is the porosity, S is the -phase saturation, k (Sw) is the relative phase
permeability, c is the sound speed in the -phase, g is the gravity vector, q is the
source of the fluid, pc(Sw) is the capillary pressure.

The above system is the analog of Model II from the previous section of the paper.
Note that here the regularizing term depends on the phase saturation S . The minimal
reference scales (l  = lw, ln) differ for the phases.

The capillary pressure and the relative phase permeability are strongly non-linear
functions  of  the  saturation.  An  analytical  determination  of  the  capillary  pressure  –
saturation relation is impossible because of the irregular pore geometry. In the current
research the Brooks & Corey constitutive relationships9 are chosen as the most famous
correlations fitted to experimental data:

1

c edp S P S (23)

1
w wr

e
wr

S SS
S

(24)

2 3 2
2, 1 1w e n e ek S S k S S S (25)

where Se is the so-called effective saturation, Swr is the residual saturation, Pd is the entry
pressure,  is the indicator of the pour size distribution for the given medium.

The analog of hyperbolic Model III from the previous section of the paper is
obtained via replacing equation (18) by the next equation:
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2

2 div div grad
2

S S l cm q S
t t

u  (26)

3.2 Numerical implementation
Let us develop the computational algorithm for implementation of model (18)-(22)

on the base of explicit methods. The sought-for quantities are the NAPL saturation and
the water pressure. For simplicity the one-dimensional case is presented.

The two-level scheme with central differences for approximation of equation (18) is
written as follows (the subscript is omitted):

1

1 1

2 2

j j j j j
i i i i

i x
x

S S u u l cm q S
t x

(27)

If to base on equation (26) the three-level scheme similar to (14) should be used:
1 1 1 1

2

1 1

2
2

2 2

j j j j j

i i i i i

j j j
i i

i x
x

S S S S S
m

t t
u u l cq S

x

 (28)

Then the algorithm consists of the next stages (  = w, n).
1. Calculation of the Darcy velocities for the both phases on the current time level:

1 1 g
2

j j j
w i i ij

i

k S p p
u K

h
(29)

2. Searching for 1j

iS  on  the  new  time  level  with  the  use  of  scheme  (27)  (or
(28) if to base on equation (26)):

1 1 1

2 2

j jj
j ji i

ii x i
x

u ul ctS q S S A
m x

    (30)

3. Obtaining the NAPL saturation and the water pressure on the new time level by
means of the next system solution in each node of the spatial grid:

1 1
0 0

1 1 1
0 0

1 1

1 1

j j
w w w i w n i w

j j j
n n w i c n i n n i n

p p S A

p p S p S A
(31)

This system can be solved, for example, by Newton's method what takes only a few
iterations.

3.3 Test predictions
Among test problems on multiphase porous media flows one of the most interesting

and difficult  for  modeling  is  the  problem on  Dense  NAPL infiltration  into  a  reservoir
filled with several different kinds of sand and fully saturated with water9, 5. DNAPL is a
non-wetting phase with respect to water, so the process of displacement of the wetting
fluid by the non-wetting one under the gravitation influence is considered. For this
problem there are experimental data to be compared with numerical results. For the
present the new kinetically based approach has been implemented to solve this problem
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in a homogeneous medium in the quasi one-dimensional (see Figure 3a) and two-
dimensional statements (see Figure 3b). The proposed approach is being further
developed for predictions of heterogeneous (sandwich-type) media.

As DNAPL tetrachloroethylene is treated. The medium and fluid properties are taken
from works by Prof. R. Helmig9:

11 2

3 4
0 03 3

0.4, K 6.64 10 , 2.7, 755 , 0.09,

1000 , 1460 , 10 , 9 10

d wr

w n w n

m m P Pa S

kg kg kg kg
m m m c m c

 (32)

The model parameters in the current computations are as follows:

6 7

2
4

10 , 10 , 1407 , 1225 ,

10

w n w n

w n

m ml m l m c c
s s

m s
kg

(33)

At the initial moment the water pressure has the hydrostatic distribution, DNAPL is
absent in the domain. In the quasi 1D statement the whole top boundary is a source of
DNAPL, in the 2D statement only some central part of the top boundary is a source
which is described by the boundary condition Sn=0.4 while qn=0.  The  pressure  on  the
top boundary is atmospheric.

(a) (b)

Figure 3: Quasi 1D infiltration problem statement (a) and obtained DNAPL saturation profiles (b).

First  of  all  on  the  example  of  the  quasi  1D problem the  comparison  of  approaches
based on equation (18) and on equation (26) has been performed using the algorithm
from Subsection 3.2. Obtained results have completely coincided what confirms the
adequacy of model (26), (19)-(25).

Further this model and the corresponding three-level scheme (28) are verified by the
comparison with the classical model without any regularizing terms (like equation (1)).
The same computational algorithm is used for the classical model implementation but
the phase continuity equations are approximated via the conditionally stable two-level
scheme with upwind differences for convective term approximation what is rather
traditional. Figure 3b shows very close agreement of DNAPL saturation profiles.
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Figure 4b demonstrates the DNAPL saturation field at some time moment obtained
on the basis of model (26), (19)-(25) for the 2D problem. This field has the typical
qualitatively  correct  view.  Red  colour  corresponds  to  the  maximal  value  of  the
saturation.

(a) (b)

Figure 4: 2D infiltration problem statement (a) and the obtained DNAPL saturation field (b).

Comparison of the new hyperbolic model and the classical model in the 2D statement
is reflected by Figure 5 where the DNAPL saturations in the middle cross section are
presented. Good agreement is observed: solution fronts differ within one computational
grid cell.

Figure 5: DNAPL saturation profiles at different time moments for the 2D infiltration problem.

Table 2 illustrates the time step restriction and -parameter values for the three-level
scheme  when  solving  the  2D  problem  on  grids  of  different  coarseness.  In  the  current
implementation the time step t h  is achieved.

hx, m 0.05 0.02045 0.1
hy, m 0.05 0.01969 0.1

t, s 0.05 0.01 0.1
, s 1.0 0.02 0.2

Table 2: Dependence of the time step from spatial steps for the 3-level scheme on the 2D problem
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4 CONCLUSIONS
A new model of the hyperbolic type has been proposed for simulation of porous

media flows including two-phase fluid flows. The model is developed by the analogy
with kinetically-consistent finite difference schemes and the related quasi-gas dynamic
system of equations basing on the principle of minimal sizes i.e. taking into account
minimal reference scales on space and on time. The explicit three-level scheme with a
mild stability condition has been proposed for the modified continuity equation
approximation. The new approach has been verified by comparison with traditional
ones via numerical simulation of a number of test problems.

The proposed approach is very promising for HPC. At present the algorithms
developed are being implemented on a graphic cluster using CUDA libraries. In the
future the new model and parallel algorithms will be used for solution of large-scale
applied problems based on real data.
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