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Abstract. The use of mesh refinement techniques is becoming more and more popular
in computational fluid dynamics, from multilevel approaches to adaptive mesh refinement.
In particular, direct numerical simulations of two-phase flow have seen recently the in-
troduction of a finer grid for interface representation. In general, the mesh used for
surface tension calculations requires higher resolution than the grid where the conserva-
tion equations are discretized and the introduction of these auxiliary grids overcomes some
well-known limitations of Volume-of-Fluid (VOF) and Level Set methods. In particular
for VOF methods, the interface discontinuity at the cell boundary can cause the deforma-
tion of the interface shape at low resolution even for simple translations and solid-body
rotations. In fact different interface lines interact with each other in the reconstruction
step at a distance of a couple of grid spacings, causing distortion and eventually numerical
break-up of the interface. The methodology we present provides a smoother description
of the interface and its geometrical properties which are necessary for an accurate capil-
lary force evaluation. The use of different grids for Navier-Stokes equations and interface
representation requires the projection of the velocity field from the coarse to the higher
resolution grid. This procedure is not trivial, especially for incompressible flows where the
divergence-free constraint must be satisfied on both grids. In this paper we present a new
method to estimate the velocity field on the fine mesh based on an optimal approach. This
algorithm allows us to satisfy the divergence-free constraint in every cell of the fine grid
in two- and three-dimensional geometry. This is achieved by a constrained minimization
of an objective functional. The proposed functional is the integral of the square of the
error between the computed and the linear interpolation velocity field. The minimization
is subject to the divergence-free constraint which therefore must be always satisfied. In
this way, the projected velocity field is divergence-free and the interface advection does not
generate unrealistic situations that could lead to an unphysical behavior. In the last part
of the paper we present some results obtained with the above method in two-phase flow
simulations in order to assess its reliability and robustness.
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1 INTRODUCTION

In this work we present a multilevel VOF method and a projection velocity approach
that improve two phase flow simulations with front tracking techniques. Adaptive Mesh
Refinement (AMR)6,9, 14 is a common technique nowadays and many authors have intro-
duced approaches in which the computational grid for interface resolution is finer than
the surrounding grid.4 The use of a finer grid allows to solve some difficulties of front
capturing algorithms, especially Volume-of-Fluid (VOF) methods, and to reproduce cor-
rectly a drop or a filament with a characteristic length comparable to the grid spacing.
These numerical issues may change the fluid topology and lead to an unphysical evolution
of the interface.

VOF method uses the color function which represents the fraction of volume in each
cell occupied by the reference phase.2,15 In each cell the interface is approximated with a
segment in two dimensions or a plane in three dimensions and its orientation is obtained
with discrete numerical schemes applied to the color function. In this work we present
a refinement technique for VOF simulations called multilevel VOF that introduces a fine
grid for the interface to capture structure of small dimensions. In order to have minimal
memory requirements and low CPU load we implement some techniques that exploit the
sparsity of the VOF data.

In multilevel methods particular care must be taken in the projection of the velocity
from the coarse to the fine grid.11 The divergence-free constraint is not satisfied when
the projection is computed by simple linear or quadratic interpolation. To this purpose
we introduce a novel approach that produces a projected velocity field close to standard
linear interpolation and able to preserve the divergence-free constraint.

In the simulation sections the algorithms are tested in two- and three-dimensional do-
mains. The features of the technique are stressed in some kynematic simulations that show
mass conservation properties and very detailed interface structures. In the final section we
deals with typical three-dimensional advection methods, like Lagrange-Lagrange-Lagrange
advection algortihms, which do not have divergence-free velocity field and therefore can-
not, in principle, conserve the fluid mass.

2 VOLUME-OF-FLUID METHOD

The Volume-of-Fluid (VOF) method is one of the most popular techniques to study
two-phase flows on fixed grids.15 We consider a domain Ω with boundary Γ. In the
single–fluid formulation of the Navier-Stokes equations we introduce the characteristic
function

χ(x, t) =

∫
Ω1(t)

δ(x′ − x) dx′ ∀x ∈ Ω , (1)

where Ω1 is the portion of Ω occupied by the main phase. From this definition it follows
that χ is equal to 1 in the reference phase, zero in the other phase and discontinuous
across the interface. Under the hypotheses of immiscible fluids with no phase change, the
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function χ behaves like a passive scalar and is simply advected by

∂χ

∂t
+ (u · ∇)χ = 0 , in Ω× [0, T ] . (2)

The color function C is a discrete function defined as

Ci(t) =
1

Vi

∫
Ωi

χ(x, t) dx , (3)

where Vi is the volume of the i-th computational cell Ωi. The color function takes a value
between zero and one in the cells cut by the interface. In the Piecewise–Linear Interface
Calculation (VOF/PLIC) algorithm the interface in each mixed cell is reconstructed by
a segment or a portion of a plane, under the volume conservation constraint. The recon-
struction provides an approximate characteristic function χ̃ which is used to compute the
reference phase fluxes across the cell boundary to update the C data.

2.1 Interface reconstruction

We consider widely used reconstruction and advection algorithms in order to focus on
multilevel approach and velocity field interpolation. In two-dimensional geometries the
ELVIRA reconstruction algorithm13 calculates local height function values by adding the
C data along the columns and rows of a 3×3 block around the central cell. It then derives
six normal vector candidates m̃ by evaluating backward, central and forward differences
of the height function. With each candidate the central cell segment is reconstructed and
then extended to the whole block of cells defining an approximate C̃ distribution. The
selected candidate minimizes the discrete error E in L2 between the real data C and the
approximate values C̃

E(m̃) =

(∑
k

(C̃k(m̃)− Ck)2

) 1
2

. (4)

This technique reproduces any linear interface exactly.
The ELVIRA algorithm has been extended to three-dimensional Cartesian grids12 and

it requires a 5×5×5 block of cells and 144 normal vector candidates to reconstruct exactly
any linear interface. This approach is very expensive when the number of cut cells is large.
For this reason we consider a reduced version of this reconstruction algorithm, that relies
only on a 3 × 3 × 3 cell stencil. In this algorithm we compute the local height function
and consider only the forward, central and backward finite differences along the three
spatial directions. In addition, we test the normal vector with the Parker–Youngs method
which is particularly efficient at low resolutions. The normal is selected by evaluating the
same error (4) of the two-dimensional case. This approach does not reproduce all linear
interfaces exactly, but is a good compromise between the number of candidates and the
accuracy of the reconstruction.
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2.2 Interface advection

In this work we use some split techniques to propagate separately the interface along
each coordinate direction. Unsplit algorithms are less popular because they are generally
much more complex and rather cumbersome to implement in an efficient way,5 in par-
ticular in three dimensions. Most split techniques rely on the conservative form of (2)
written as

∂χ

∂t
+∇ · (χu) = χ∇ · u . (5)

Let us integrate over the cell Ωi the one-dimensional equation along the x direction to get

∂Ci(t)

∂t
+

1

Vi

∫
Γi

χ(x, t)u · n dS = Ci
∂u

∂x
, (6)

where the term ∂u/∂x can be computed as the cell mean value. We note that it may be
different from zero even for divergence-free velocity fields. If we consider two consecutive
discrete times tk and tk+1 = tk + ∆t and approximate the spatial derivative with central
finite differences we get

Ck+1
i = Ck

i −∆Φ̃i + C̃i∆u , (7)

where Φ̃i is the normalized flux. The symbol ∆α denotes the difference between the right
and left boundary value of the scalar quantity α.

In the Eulerian implicit (E) scheme C̃i = Ck+1
i so that (7) becomes

Ck+1
i = a

(
Ck

i −∆Φ̃i

)
, (8)

where a = 1/(1−∆u) is the expansion/contraction coefficient of the Eulerian step.

In a similar way, in the Lagrangian explicit (L) scheme C̃i = Ck
i so that (7) becomes

Ck+1
i = bCk

i −∆Φ̃i , (9)

where b = (1 + ∆u) is the corresponding expansion/contraction coefficient of the La-
grangian step.

In two dimensions the two previous steps can be combined in an area-preserving algo-
rithm. This method is called geometrical unsplit since it can be seen as a linear mapping
between two different tessellations of the plane. The method combines an Eulerian step
in the x direction followed by a Lagrangian step in the y direction to form the linear
transformation2

Πxy =

{
x′ = a(x+ ui)

y′ = by + vi

, (10)

where a = 1/(1 − ∆u) and b = 1 + ∆v. The discrete version of the area conservation
constraint can be written as ∆u + ∆v = 0, then a b = 1. This corresponds to the area
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preserving property that does not generate undershoots or overshoots. By alternating the
implicit and explicit steps no coordinate direction is preferred.

For three-dimensional simulations we need to look for an area–preserving algorithm by
combining three steps of the form (7). The constraint can now be formally written as
abc = 1, where a, b and c are the expansion/contraction coefficients of each single split
step. We use the Eulerian implicit step along the x direction and the Lagrangian explicit
step along the z direction as the first and last step of the three-dimensional algorithm.
Then, we define a new intermediate step along the y direction, that we call the Modified
Eulerian (M) step, given by

b =
1

ac
=

1−∆u

1 + ∆w
= 1 +

∆v

1 + ∆w
. (11)

This is an algebraic definition that satisfies the three-dimensional discrete divergence-free
constraint ∆u+∆v+∆w = 0, but the Modified Eulerian scheme cannot ensure 0 ≤ C ≤ 1.
As a matter of fact, this step may introduce small inconsistencies that are seen as local
overshoots or undershoots. The magnitude of these errors decreases as the time step is
reduced.

2.3 Multilevel approach

The multilevel technique has been proposed to reduce the weaknesses of front-capturing
algorithms, such as VOF and Level Set.7,8, 10 If the interface structure characteristic
length is comparable to the grid spacing, artificial break-up or coalescence can occur. To
this purpose we introduce a separate mesh for interface advection that is derived from
the velocity and pressure grid with a mid-point refinement algorithm. The coarse grid
quantities and the fine ones are identified with the superscript c and f , respectively.

In this work we present some kinematic simulations and focus on the advection equation
of the color function. The divergence-free constraint∫

Ω

qc∇ · ucdV = 0 ,

∫
Ω

qf∇ · ufdV = 0 , (12)

is satisfied on both grids. If the coarse velocity field uc is substituted at the fine level we
obtain ∫

Ω

qf∇ · ucdV =

∫
Ω

qf Rfc(uc,uf ) dV , (13)

where Rfc is the fine-to-coarse mass transfer operator defined by

Rfc(uf ,uc) = ∇ · (uf − uc) . (14)

This operator quantifies the mass conservation error when the divergence-free constraint
is not satisfied on the fine grid. Since we do not solve the Navier-Stokes equations on
the fine grid, we must rely on a projection operator to get the fine velocity field from the
coarse one. We remark that the operator Rfc is equal to zero only when the projection
operator preserves the divergence-free constraint.
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2.3.1 Numerical implementation

Figure 1: Full memorization at the coarse level on a grid with 24× 42 square cells, sparse memorization
with one refinement level, f = c + 1 and 48× 84 cells, and then with two and three refinement levels (left
to right and top to bottom).

The introduction of a finer grid can lead to large memory requirements and CPU time
due to the huge number of fine cells. To avoid performance decreases of the overall numer-
ical model we compress the C data and perform the reconstruction/advection algorithm
simultaneously over grid subregions. An example of the sparse memorization is given in
Fig. 1 where we show on the top left the stored cells for a circular interface on a coarse
grid and the stored cells at different refinement levels. The total number of cells increases
by a factor of four in 2D (eight in 3D) while the number of cells in the sparse approach
increases approximately only by a factor of two (four) since only the cut cells are stored.

The C data storage is similar to the Compressed Row Storage algorithm (CRS).3 We
show a two-dimensional example in Fig. 2 where for each row we store only the number
of entries nc, the C data and their column numbers. The empty cells are discarded and a
sequence of n consecutive full cells is stored as a single value equal to n. For example in
the third row of Fig.2, we memorize in the second column the number 4 to represent the
sequence of four consecutive full cells. With this technique we can use many refinement
levels and keep the storage requirements proportional to the length of the interface divided
by the fine grid spacing. In order to use the sparse matrix storage technique we need to
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implement an efficient numerical algorithm to extract and compress the data.

0 0 0.01 0.05 0.08 0.03 0 0 0

0 0.13 0.82 1 1 0.98 0.81 0.22 0

0 0.72 1 1 1 1 0.95 0.28 0

0 0.83 1 1 1 0.79 0.12 0 0

0 0.65 1 1 1 0.48 0 0 0

row nc C column
1 4 0.01 0.05 0.08 0.03 3 4 5 6
2 6 0.13 0.82 2 0.98 0.81 0.22 2 3 4 6 7 8
3 4 0.72 4 0.95 0.28 2 3 7 8
4 4 0.83 3 0.79 0.12 2 3 6 7
5 3 0.65 3 0.48 2 3 6

Figure 2: A color function distribution on a 9 × 5 Cartesian mesh (top) and the corresponding stored
data (bottom), with row number, number of cells nc, color function in the mixed and consecutive full
cells, and column position.

In the reconstruction and advection algorithms we do not perform the VOF calculations
on a single block of 3× 3 cells but use three complete rows of n cells along the horizontal
coordinate. Then, we compute all the normal vectors and the fluxes and store them again
in the compact form. The normal vectors can be stored in the same way as C data.
The three-dimensional extension of this approach is straightforward and shows similar
features. The 3× n cell block is replaced by a 3× 3× n cell block.

3 OPTIMAL APPROACH FOR VELOCITY REFINEMENT

We consider a velocity field that satisfies the divergence-free condition on a given coarse
grid. If we introduce a refined grid and compute the velocity field on the additional nodes
as a weighted average of the values on the coarse grid, then the refined velocity field
does not satisfy the divergence-free constraint. To satisfy this we introduce an optimal
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constrained approach where the objective functional is the sum of the squared difference
between the velocity and the linear interpolated values. The minimization is solved by
using the Lagrange multiplier method.

3.1 Two-dimensional projection

0 1

23

0 1

23

4

5

6

7 8

Figure 3: The coarse element with four nodes (left) and the refined one with nine nodes (right).

We consider the case shown in Fig. 3, where we calculate the velocity vector at the
nodes 4, 5, 6, 7 and 8 starting from the known values at 0, 1, 2 and 3. The refined velocity
field must satisfy the following discrete divergence-free condition in each sub-cell

D0 = u4 + u8 − u7 − u0 + v8 + v7 − v4 − v0 = 0 (15a)

D1 = u1 + u5 − u8 − u4 + v5 + v8 − v1 − v4 = 0 (15b)

D2 = u8 + u6 − u3 − u7 + v6 + v3 − v8 − v7 = 0 (15c)

D3 = u5 + u2 − u8 − u6 + v2 + v6 − v5 − v8 = 0 . (15d)

In the linear system (15) there are four equations and ten unknowns, which are the velocity
components of the additional nodes. This system is clearly underdetermined so we can
set the value of some unknowns to their weighted average. In particular we set

v4 = (v0 + v1)/2 , u5 = (u1 + u2)/2 ,

v6 = (v2 + v3)/2 , u7 = (u3 + u0)/2 , (16)

u8 = (u0 + u1 + u2 + u3)/4 , v8 = (v0 + v1 + v2 + v3)/4 ,

and solve for u4, v5, u6 and v7.
We introduce the functional

J =
1

2
(u4 − ũ4)2 +

1

2
(v5 − ṽ5)2 +

1

2
(u6 − ũ6)2 +

1

2
(v7 − ṽ7)2 , (17)
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where the target values are

ũ4 = (u0 + u1)/2 , ṽ5 = (v1 + v2)/2 , (18a)

ũ6 = (u2 + u3)/2 , ṽ7 = (v3 + v0)/2 . (18b)

The augmented Lagrangian functional P , given by the sum of J and (15), becomes

P = J +
3∑

i=0

γiDi , (19)

where γi are the Lagrange multipliers associated to the discrete divergence Di. We can
now determine the minimum of P by setting

δP = (u4 − ũ4)δu4 + (v5 − ṽ5)δv5 + (u6 − ũ6)δu6 + (v7 − ṽ7)δv7 + γ0(δu4 + δv7)+

+ γ1(−δu4 + δv5) + γ2(δu6 − δv7) + γ3(−δu6 − δv5) +
3∑

i=0

δγiDi = 0 . (20)

Since all variations in (20) are independent, we can set each of them to zero and get a
linear system of eight equations in u4, v5, u6, v7 and the four Lagrangian multipliers. The
system does not have full rank, since the (15) are not linearly independent. Therefore, we
must enforce an additional condition and impose that each sub-cell divergence equals to
one quarter of the coarse cell value. In all kinematic tests of the next section this value
is zero. The analytical solution for the velocity components is

u4 =
2u0 + 2u1 + v0 − v1 + v2 − v3

4
, (21a)

v5 =
u0 − u1 + u2 − u3 + 2v1 + 2v2

4
, (21b)

u6 =
2u2 + 2u3 + v0 − v1 + v2 − v3

4
, (21c)

v7 =
u0 − u1 + u2 − u3 + 2v3 + 2v0

4
. (21d)

We remark that these optimized values depend on both components of the coarse velocity
field.

3.2 Three-dimensional projection

The three-dimensional projection algorithm is a straightforward extension of the two-
dimensional case. We consider the case of a hexahedron with eight subcells and eight
discrete divergence-free conditions. The number of unknowns is now 57. In this case we
can set the velocity in the center of each edge, in the center of the hexahedron and also
the velocity component in the center of each face that is perpendicular to the face itself.
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Figure 4: The refined right hexahedron in three dimensions.

There are 12 unknowns left that are u20, v20, u21, w21, v22, w22, u23, w23, v24, w24, u25,
v25 of Fig. 4. At this point, we define the functional J and the augmented Lagrangian
functional P as in the two-dimensional case. The linear system has now 20 unknowns
and must be solved with the additional condition that each subcell has one eighth of the
coarse divergence value. The analytical solution for the first two unknowns is

u20 = (4u0 + 4u1 + 4u2 + 4u3 + 3v0 − 3v1 + 3v2 − 3v3 + v4 − v5 + v6 − v7+

+ 2w0 − 2w1 − 2w2 + 2w3 − 2w4 + 2w5 + 2w6 − 2w7)/16 ,

v20 = (3u0 − 3u1 + 3u2 − 3u3 + u4 − u5 + u6 − u7 + 4v0 + 4v1 + 4v2 + 4v3+

+ 2w0 + 2w1 − 2w2 − 2w3 − 2w4 − 2w5 + 2w6 + 2w7)/16 .

The other can be obtained with simple index permutations. We remark that also in this
case each optimized velocity depends on all three velocity components.

4 NUMERICAL TESTS

In the next subsections we compare the performance of the optimized velocity projec-
tion algorithm and the simple linear interpolation. The velocity field is modulated in time
with a cosinusoidal function so that at the end of the simulation period T the interface
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should be exactly on top of the initial configuration Ĉ. We define the mass error

Em =
|
∑

j Cj −
∑

j Ĉj|∑
j Ĉj

, (23)

where the sum spans over all the cells of the computational domain. We also define the
geometrical error

Eg =
∑

j

|Cj − Ĉj| , (24)

and the relative geometrical error

Er =

∑
j |Cj − Ĉj|∑

j Ĉj

. (25)

The mass conservation is affected only by the velocity interpolation method and the
advection algorithm. The other errors may depend on the reconstruction algorithm as
well.

4.1 Two-dimensional tests

In these tests we use the ELVIRA reconstruction method and advect the interface with
the geometrical unsplit algorithm with different refinement levels. The single–vortex

Figure 5: Single–vortex test with period T = 8, max(CFL) = 1, coarse grid with 32× 32 cells and three
refinement levels. The interface is shown at times t = 0, T/8, T/4, 3T/8, T/2, T (left to right, top to
bottom).

test is a popular kinematic test that stretches and deforms the interface to a large extent
and shows the excellent mass conservation property of the multilevel VOF method when

11



A. Cervone, S. Manservisi and R. Scardovelli

Figure 6: Single–vortex test of Fig. 5, but with two refinement levels. The mixed cells that are stored in
the compact memorization matrix are shown at times t = T/8, T/4 (left to right).

f = c+ 2 f = c+ 3 f = c+ 4
opt lin opt lin opt lin

Em 3.926e-16 1.547e-03 5.889e-16 3.180e-06 1.177e-15 5.040e-07
Er 2.033e-02 7.558e-03 4.234e-03 4.216e-03 1.090e-03 1.051e-03
Eg 1.437e-03 1.044e-03 2.969e-04 2.957e-04 7.705e-05 7.436e-05

Table 1: Mass Em, relative geometrical Er and geometrical Eg errors for the optimal (opt) and linear
(lin) interpolations, for the single–vortex test of Fig. 5 and three different refinement levels, f = c + 2,
f = c + 3 and f = c + 4.

coupled to the optimized velocity projection. The velocity field is derived from the stream
function

ψ(x, y, t) =
cos(πt/T )

π
sin2(π x) sin2(π y) , (26)

with u = −∂ψ/∂y and v = ∂ψ/∂x. The partial derivatives are approximated by finite
differences, so that the discrete divergence-free condition is exactly satisfied. The circle
at t = 0 is centered at (0.5, 0.75) with radius R = 0.15, and the computational grid is the
unit square [0, 1]× [0, 1].

In Figs. 5 and 6 we can see the interface evolution of the vortex test with T = 8
over a coarse grid with 32× 32 with different fine resolutions. Fig. 5 shows the interface
reconstruction at different times with a fine grid of 256 × 256 cells while Fig. 6 shows
the storage pattern with a 128× 128 cell domain. Tab. 1 summarizes the errors obtained
with the optimal and linear approaches for different refinement levels. The optimal control
approach for the velocity refinement satisfies accurately the mass conservation while the
linear interpolation does not. The values shown in the table are computed at the end of the
simulation but mass error remains of the same order at each time step. The geometrical
error is largely dependent on the reconstruction method. Even if the geometrical errors are
close, the results with linear interpolation are lower. In fact, in the optimal interpolation
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each refined velocity depends on both components on the coarse grid inducing a small
distortion of the refined velocity field.

CFL = 1 CFL = 0.1
opt lin opt lin

Em 5.889e-16 3.180e-06 9.620e-15 3.159e-06
Er 4.234e-03 4.216e-03 6.277e-03 6.339e-03
Eg 2.969e-04 2.957e-04 4.437e-04 4.480e-04

Table 2: Mass Em, relative geometrical Er and geometrical Eg errors for the optimal (opt) and linear
(lin) interpolations, for the single–vortex test of Fig. 5 with three refinement levels, f = c + 3, and
different values of the CFL number.

In Tab. 2 we compare the result for the case f = c + 3 and a variable CFL number.
Again, the mass conservation is accurately satisfied only by the optimized refinement
projection. The geometrical errors increase since when CFL = 0.1 we compute 10 times
the reconstructions of the case CFL = 1. The geometrical error in both cases is similar,
however, when we increase the number of time steps by decreasing the CFL number, we
observe that the optimal approach is more performing.

Finally we consider a different test and show the performance of the multilevel VOF
approach with several grid refinements. The velocity field is again derived from the stream
function

ψ(x, y, t) =
cos(πt/T )

4π
sin(4π (x+ 0.5)) cos(4π (y + 0.5)) . (27)

This test is usually called four vortex test. The circle is now centered at (0.5, 0.5) with
radius R = 0.15 and the computational domain is again the unit square. The simulation
is shown in Fig. 7 with six levels of grid refinement, corresponding to a mesh of 2048 ×
2048 cells. With this resolution our multilevel approach is very close to a front tracking
algorithm. The mass is also conserved very accurately throughout the simulation, i.e.
EM ' 10−16.

4.2 Three-dimensional tests

We have selected a few three-dimensional tests to show how the optimal projection
approach performs when it is coupled to different split advection schemes. In the sim-
ulations we always consider the 3D reduced ELVIRA reconstruction algorithm. In the
first test we consider a two-dimensional velocity field in a three-dimensional domain. We
introduce a vector stream function ψ(x, y, z, t) which is defined from the scalar stream
function ψ(x, y, t) of (26) as

ψ = (0, 0, ψ(x, y, t)) , u = ∇×ψ . (28)

In the simulation we use two different split advection techniques. The first one, denoted by
EML, is a sequence of an Eulerian implicit, a Modified Eulerian and a Lagrangian explicit
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Figure 7: Four vortex test with period T = 2. The interface is shown at times t = 0, 1/8, 1/4, 3/8, 1/2,
5/8, 3/4, 7/8, 1.
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Figure 8: 3D single–vortex test with period T = 2, coarse grid with 16 × 16 × 16 cells and a single
refinement level. The interface is shown at times t = 0, T/2, T .

Figure 9: 3D single–vortex test with period T = 2, coarse grid with 16× 16× 16 cells and two refinement
levels. The interface is shown at times t = 0, T/2, T .

step. The second one is given by three consecutive Lagrangian explicit steps (LLL). Since
the coarse velocity field is two-dimensional, we put the Modified Eulerian step along the
third direction. This velocity component is exactly zero for the linear interpolation and
very small for the optimal projection.

The interface at initial time, half period and final time is shown in Figs. 8, 9 and 10 for a
different number of refinement levels. The corresponding errors are given in Tab. 3 for the
two different interpolation methods and with the EML split advection. The results are in
agreement with those of the two-dimensional case. The mass conservation is very accurate
only with the optimal velocity refinement, while the geometrical errors do not change
significantly. In Tab. 4 we consider two levels of grid refinement and change the CFL
number. Again, the mass conservation is very accurate only with the optimal algorithm
combined with the EML split advection. The sequence of three Lagrangian steps does not
conserve the mass in spite of the chosen interpolation method. The geometrical errors do
not change significantly with the interpolation method and the advection scheme.

For the fully three-dimensional velocity field we define a new scalar and a new vector
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f = c+ 2 f = c+ 3 f = c+ 4
opt lin opt lin opt lin

Em 2.233e-14 4.029e-07 3.681e-15 2.824359e-06 4.540e-15 6.540e-06
Er 8.257e-02 8.207e-02 2.210e-02 2.186416e-02 7.289e-03 7.187e-03
Eg 1.167e-03 1.160e-03 3.121e-04 3.090973e-04 1.030e-04 1.016e-04

Table 3: Mass Em, relative geometrical Er and geometrical Eg errors for the optimal (opt) and linear
(lin) interpolations, for the 3D single–vortex test with period T = 2, max(CFL) = 0.1, EML advection,
coarse grid with 16 cells and three different refinement levels, f = c + 1, f = c + 2 and f = c + 3.

CFL = 0.1
EML LLL

opt lin opt lin
Em 2.233e-14 4.029e-07 7.597e-03 7.581e-03
Er 8.257e-02 8.207e-02 8.942e-02 8.888e-02
Eg 1.167e-03 1.160e-03 1.264e-03 1.256e-03

CFL = 0.01
EML LLL

opt lin opt lin
Em 1.043e-13 1.649e-05 7.796e-04 7.581e-03
Er 8.507e-02 8.456e-02 8.489e-02 8.888e-02
Eg 1.202e-03 1.195e-03 1.200e-03 1.256e-03

CFL = 0.001
EML LLL

opt lin opt lin
Em 1.645e-14 1.831e-05 7.815e-05 8.067e-05
Er 8.559e-02 8.506e-02 8.474e-02 8.409e-02
Eg 1.210e-03 1.202e-03 1.198e-03 1.188e-03

Table 4: Mass Em, relative geometrical Er and geometrical Eg errors for the optimal (opt) and linear
(lin) interpolations, for the 3D single–vortex test with period T = 2, EML and LLL advections, coarse
grid with 16× 16× 16 cells, two refinement levels, f = c + 2, and different values of the CFL number.
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Figure 10: 3D single–vortex test with period T = 2, coarse grid with 16×16×16 cells and three refinement
levels. The interface is shown at times t = 0, T/2, T .

stream function

ψ1(x, y, z, t) =
cos(πt/T )

π
sin2(π x) sin2(π y) sin2(π z) , (29)

ψ(x, y, z, t) = (ψ1, ψ1, ψ1) ; u = ∇×ψ . (30)

The discrete velocity field is divergence-free when the curl is calculated with central finite
differences.

In Fig. 11 we show the evolution of the interface with the optimal velocity interpolation.
In this case we observe that also the optimal approach does not preserve exactly the mass
because the modified Eulerian step can generate small overshoots and undershoots, as we
have pointed out previously. The mass error is 3.451e − 6 and remains several orders of
magnitude below the geometrical error. The mass error for the linear interpolation is only
a couple of orders of magnitude larger and does not lead to significant differences. The
situation changes for dynamical simulations where the divergence-free constraint is very
important to compute a consistent velocity field around the interface.1

5 CONCLUSIONS

The focus of this paper is a novel approach to project the velocity field from a coarse
field, where the velocity and pressure fields are computed, to a fine grid where the interface
is advected and its geometrical properties are calculated. There are several reasons to
investigate the feasibility of a multilevel approach where the interface is evolved on a
grid with a higher resolution than the one used for the dynamical variables. We recall
that interface details smaller than a few grid spacings, such as high curvature regions and
thin filaments, are poorly resolved and usually lead to numerical brakup or coalescence
of the interface. With this technique these problems are not removed but they develop
on a smaller spatial scale. Furthermore, as we increase the number of refinement levels
the interface representation becomes smoother and smoother. We have shown that the
optimal projection is feasible in both two and three dimensions and that the divergence-
free constraint is satisfied very accurately. When the optimal velocity interpolation is
coupled to an advection scheme that does generate numerical undershoots or overshoots
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Figure 11: Fully-3D single–vortex test with period T = 4, coarse grid with 16 × 16 × 16 cells and five
refinement levels. The interface is shown at times t = 0, T/8, T/4, 3T/8, T/2, T (left to right, top to
bottom).
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the divergence value is around machine precision. Furthermore, we have found that the
geometrical error is comparable to the linear interpolation, even if the optimal approach
slightly deforms the refined velocity field. The optimal velocity interpolation can also be
applied to other front-capturing algorithms, such as the Level Set method.
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