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Abstract. Since hypersonic boundary-layer-transition is dominated by acoustic second
mode instabilities, so-called Mack modes, one strategy to delay or prevent the transition
process is to damp these modes passively by acoustic absorptive coatings which are realised
in practise by porous walls. In the present paper a second mode stability analysis is per-
formed for a boundary layer flow at Mach 6 over various porous walls. The influence
of rarefied gas behaviour of the flow inside the pores is investigated by comparing a slip
boundary condition with finite Knudsen numbers with a non-slip boundary condition for
different radii and depths of the pores. For this study two different approaches are used:
Linear stability analysis compared with direct numerical simulations including the mod-
elling and resolution by a 4th order Navier-Stokes solver. Good agreement for different
porous wall cases with adiabatic as well as cold wall condition is demonstrated. The ap-
proach of a slip boundary condition for rarefied gases, modelling a Knudsen-layer along
the pore walls, results in all cases in an additional damping effect that can be explained
physically.
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1 INTRODUCTION

The ability to stabilize a hypersonic boundary layer for re-entry vehicles during flight
to prevent transition is of high importance since skin friction drag and heat transfer rates
in a turbulent boundary layer can be several times higher than those of a laminar one. A
lot of different strategies are used to delay or prevent the transition process. In this work
the manipulation of the transition by the use of porous surfaces is performed to influence
the growth of the second mode in a passive way. The second or so called Mack mode1 is
the dominant mode for the transition process at hypersonic Mach numbers.

Malmuth et al.2 have shown by inviscid linear stability theory a strong stabilisation
effect of the second mode using a passive porous surface. In a continuation study Fedorov
et al.3 confirmed the results by the use of viscous linear stability theory. Experiments
of Rasheed and Hornung4 on a 5◦ half-angle sharp cone (M∞ ∼ 5 − 6) with micropores
qualitatively confirmed the theoretical prediction. The working group around Fedorov
performed further analyses and experiments. A good summary, which also includes an
overview of the slip boundary condition for rarefied gases, is given by Maslov et al.5. Two-
dimensional direct numerical simulation studies that resolve the pores are presented by
Bres et al.6,7, where the linear stability theory code was verified. A study of the effect by
direct numerical simulations with a three-dimensional pore flow is presented by Sandham
and Lüdeke8.

In this paper two simulation techniques are used: Direct Numerical Simulation (DNS)
by a 4th order finite difference version of the DLR FLOWer code8,9, which is used to
provide complete solutions of the boundary layer flow over and the flow inside the pores,
compared with the DLR spatial linear stability code NOLOT10. Former investigations,
performed with non-slip boundary conditions inside the pores, show good agreement be-
tween these codes for different porous walls11. The present study investigates the influence
of rarefied gases inside the pores modelled by a slip boundary conditions at finite Knudsen
number Kn, which is the ratio of characteristic length scales. As shown by Maslov et al.5,
the flow inside the pores cannot always be treated as a continuum, since the mean free
path of the fluid particles inside the cavities has a significant value in comparison with
the pore diameter, so generally the Knudsen number based on this diameter is no longer
small. Within the present study, the influence of the slip boundary condition at differ-
ent Knudsen numbers in comparison with the non-slip boundary condition calculated by
direct numerical simulation and linear stability theory will be shown. Good agreement
of both methods by a comparison for Mach 6 boundary layer flow over different porous
walls with adiabatic as well as cold walls is demonstrated. The slip boundary condition
generated in all cases an additional damping effect which will be explained physically in
the following.
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2 Numerical methods

2.1 Direct Numerical Simulation by a 4th order finite difference method

For the DNS calculations a high-order variant of the DLR FLOWer code is used.
The basic FLOWer code solves the compressible Reynolds-averaged Navier-Stokes equa-
tions, which are written in the conservation form, under perfect gas assumption on block-
structured grids using second order finite volume techniques and cell-centred or cell vertex
variables. The high-order version uses a fourth-order central differencing based on com-
pact finite differences in a cell-centred formulation. Additional high-order compact filters
are implemented that are applied at the end of each time step14. The DNS is initialised
by an artificial disturbance at t = 0 to allow the development of the eigenmode within
the calculation. The initial disturbance, which is applied for non-slip as well as for the
slip boundary conditions, is a rough approximation of a second mode eigenfunction and
is expressed as:

v = 0.0001 exp
[
−4(y − 0.8)2

]
sin(2πx/Lx) (1)

Due to the fact, that inside the pores with a small radius r the mean free path λ of the
molecules becomes comparable to the relevant length scales of the shear layer, the flow
cannot always be treated by a continuum approach5. Since the Knudsen layer thickness
is of the order of the mean free path and outside this layer the gas can be treated again
as a continuum, the influence of the Knudsen-layer is taken into account as an additional
boundary condition. In a first-order approximation the boundary conditions for a small,
finite Knudsen number are:

uw = AuKn
(

∂u

∂r

)
, Tw = AeKn

(
∂T

∂r

)
(2)

with uw and Tw as fluid-velocity and temperature at the surface. The Knudsen number
is defined as:

Kn =
4η

ρ c̄ r
(3)

where η is the dynamic viscosity, ρ the density, c̄ =
√

8RT/π the mean molecular velocity
with the gas constant R and the gas temperature T . The dimensionless factors Au and
Ae are outcomes of the gas kinetic theory where they are a measure of the interaction of
the gas molecules with the molecules of the wall12. They can be expressed in terms of the
molecular tangential impulse and the energy accommodation coefficients αu and αe.

Au = α−1
u − 0.5 , Ae = 2γ(α−1

e − 0.5)/(γ + 1) (4)

In this paper the accommodation coefficients for DNS as well as for linear stability theory
are approximated by αu = αe = 0.9 which is taken from references5,13.

The pores are described as rectangular cavities in a way that the grids match at the
interface, removing interpolation as a possible source of error. For this study the sim-
ulations for the DNS were performed two-dimensional. Thus the pores are reduced to
spanwise grooves with parallel sides and the half-width b.
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2.2 Linear Stability Theory and absorptive boundary conditions

The NOLOT code10, which is a spatial linear stability code, was developed in coop-
eration between DLR and FOI and can be used for local as well as non-local analyses.
In this work the local linear spatial approach is used which is a subset of the nonlocal
stability equations. The equations are derived from the equations of conservation of mass,
momentum and energy, which govern the flow of a viscous, compressible, ideal gas, for-
mulated in primitive variables. All flow and material quantities are decomposed into a
steady laminar basic flow q̄ and an unsteady disturbance flow q̃.

q(x, y, z, t) = q̄(x, y) + q̃(x, y, z, t) (5)

The disturbance q̃ is represented as a harmonic wave

q̃(x, y, z, t) = q̂(x, y) exp[i(αx + βz − ωt)] (6)

with the complex-valued amplitude function q̂. In the following the hat over a variable
denotes an amplitude function. Since NOLOT is a spatial code the wavenumbers α and
β are complex quantities and the frequency ω is a real value. −αi is the complex growth
rate. The given boundary conditions in NOLOT for a smooth wall (at y = 0) are:

ûw, v̂w, ŵw, T̂w = 0. (7)

The NOLOT code is validated with the help of several test cases against published results,
including DNS, PSE (parabolized stability equations), multiple scales methods and LST.
A good summary of the validation is given by Hein et al.10. For the treatment of porous
walls with non-slip boundary condition and slip boundary condition, additional boundary
conditions were implemented within this study. The validation of the non-slip boundary
condition is given in11. Both boundary conditions for porous walls are taken from Maslov
et al.5 and Koslov et al.13, a complete derivation can be found in these references. The
conditions are written by:

ûw, v̂w = 0, ŵw = Ap̂w, T̂w = Bp̂w (8)

The thermal admittance B was found to have a marginal effect (< 1%)3 and is neglected
in the present work. The admittance A is:

A =
n

Z0

tanh(md) (9)

The investigated pores are equally spaced blind pores with a depth d, which is normalised
by the displacement thickness δ, and the porosity n. The characteristic impedance Z0

and the propagation constant m are:

Z0 = −

√
ρ̂

Ĉ

Ma
√

Tw

, m =
iωMa

√
ρ̂Ĉ√

Tw

(10)
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where the dimensionless complex dynamic density ρ̂ and dynamic compressibility Ĉ are
expressed in following form

ρ̂ =
1

1− F1(Bu, Λ)
, Ĉ = 1 + (γ − 1)F2(BE, Λ̂) (11)

The functions F depend on the shape of the pores. As described above the DNS sim-
ulations here were performed as 2D, thus the pores are reduced to spanwise grooves.
Corresponding to this approach a split boundary condition for the linear stability solver
was chosen:

F1(Bv, Λ) =
tan Λ

Λ[1−BuΛ tan Λ]
, F2(BE, Λ̂) =

tan Λ̂

Λ̂[1−BEΛ̂ tan Λ̂]
(12)

The macroscopic parameter Λ is b
√

iωρ0/η and Λ̂ is Λ
√

Pr. The pore half-width b is
normalised with the displacement thickness. While the dimensionless flow quantities are
normalised by the values of the boundary layer edge. ω represents the dimensionless
angular frequency. The factors Bu and Be are expressed in terms of the accommodation
coefficients αu and αe:

Bu = (α−1
u − 0.5)Kn , Be = (2γ(α−1

e − 0.5)/(Pr(γ + 1))Kn (13)

It has to be pointed out, that this boundary condition just includes the absorptive effect
of the porous layer without taking into account any roughness effects of the pores. Nev-
ertheless, the influence of the acoustic absorption on the first modes can be investigated
well by this approach.

2.3 Introduction of the Gaster Transformation

Due to the fact that the LST code is a spatial code while the DNS uses a temporal
approach for the mode-development, obviously a transformation for the comparison of
the growth rate is necessary, which is well known as Gaster transformation1:

ωi,temporal = σspatial cgr (14)

where ωi is the temporal growth rate, σ the spatial growth rate and cgr the group velocity:

cgr =
∂ωr

∂αr

(15)

The Gaster transformation is an approximation that is valid for small growth rates.
Within the approximation, the real part of the frequency and the real part of the wavenum-
ber of the spatial wave are the same as for the temporal wave.
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3 Grids and flow conditions

The basic flow parameters for the studied porous wall cases and, for completeness, for
a smooth wall are: M∞ = 6 at a Reynolds number of Re = 20000, a Prandtl number
of Pr = 0.72 and a ratio of specific heats of γ = 1.4. The viscosity µ is prescribed
by Sutherland’s law with a constant of 110.4K and a reference temperature of 216.65K,
leading to an adiabatic wall temperature of 1522.44K.

For the wall normal grid distribution a stretching function is used which places most
points near the wall in an analytical way. The distribution is given by a sinh function
with an iteratively determined stretching factor. In the wall normal direction 401 points
are set for both codes in the same way. For the DNS a 2D grid with 64 equally spaced
points in streamwise direction is generated. The number of points for y > 0 is again 401
and the additional points within the pores (y < 0) depend on the depth of the pores.
The pore depth and all coordinates are normalised by the displacement thickness δ. As
already mentioned the calculations of pores were performed as two-dimensional spanwise
grooves with parallel side walls. The porosity n for all cases is 0.25.

4 Simulations with adiabatic wall

For this study two different Knudsen numbers (0.1 and 0.2) were chosen. These de-
liberately selected values for the Knudsen numbers result from planned wind tunnel tests
at DLR facilities, using cones with porous surfaces. The wind tunnel conditions corre-
sponding to a flight altitude of 28 km, where the Knudsen number calculated by equation
3 is in a range of 0.1. For the first case the artificial Knudsen number is set to 0.2. The
pore half-width b is 0.0234375, corresponding to 16 pores for the DNS, and a pore depth
d of 0.8 is chosen. The pore half-width of the second case is with 0.046875 twice as large
as of the first test case and corresponds to 8 pores for the DNS. To be consistent to the
previous Knudsen number and equation 3 (Kn = 4η/(ρ c̄b)), for the second case, with
a double pore half-width b, the Knudsen number is set to 0.1. A pore depth of 1.5 is
chosen. The reason for the selected pore depths will be shown in section 4.3. There the
influence of the pore depth will be described and that only with a certain pore depth a
nearly constant growth rate is reach, which is obtain in these cases with the chosen pore
depths. An overview of the test cases, including the smooth wall case with d = 0, is
shown in table 1.

4.1 Test cases with 16 pores - slip boundary condition at Kn = 0.2

In this subsection a detailed view of the test cases with 16 pores with a Knudsen
number of 0.2 for the slip boundary condition is given.

Figures, that reapply in the following sections, like test cases with 8 pores and cold
wall cases, will be explained here in detail and won’t be repeated there.
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boundary number pore half-width pore depth
condition of pores b d

smooth wall - 0 0 0
porous wall non-slip 16 0.0234375 0.8
porous wall slip at Kn = 0.2 16 0.0234375 0.8
porous wall non-slip 8 0.0468750 1.5
porous wall slip at Kn = 0.1 8 0.0468750 1.5

Table 1: Overview of the test cases with adiabatic wall

4.1.1 Spatial growth rate - LST results

For the further detailed comparison of both codes the maximum growth rate of the
second mode have to be found, because for this value the highest damping effect is ex-
pected. With the LST a fast method is provided to calculate the whole spectrum of the
amplified growth rates, which is given in figure 1. The stability diagram shows for the
first mode of the smooth wall a maximum growth rate σ of 0.0033. Due to the fact that
the chosen pores are small enough, the absorption effect on the first mode generates only
a slight increase with the porous walls. The most unstable mode is the second mode with
a maximum growth rate of 0.0453 at a wave number of αr = 2.2. The figure demonstrates
the reduction of the second mode amplitude due to the pore effect of absorbing parts of
the disturbance energy: With the chosen wall porosity and non-slip boundary condition
the maximum growth rate is reduced by 36.4% in comparison with the smooth wall case.
The modelling of rarefied gas effects by the slip boundary condition leads to another re-
duction of 4.5% or related to the maximum rate for non-slip boundary conditions: The
maximum growth rate with slip is 7.1% smaller than the non-slip value. Another effect,
visible in figure 1, is a shift in the wavenumber for the respective cases with- and without
wall porosity. To keep the following DNS calculations comparable, a fixed wave number
α of 2.094, which is near the second mode maxima, is chosen.

In the following subsections all spatial LST results are changed by Gaster Transfor-

Figure 1: Spatial growth rate against real part of the wavenumber α calculated by LST - 16 pores
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mation (equation 14) into temporal results to compare with DNS.

4.1.2 Mack mode developing - DNS results

The chosen fixed wave number of 2.094 corresponds to a domain length Lx of 3, calcu-
lated by the following equation:

Lx =
2π

α
(16)

That means it is a wavelength of 3 times the displacement thickness. Using this fixed
domain length Lx, figure 2 shows DNS results from Mack modes developing on a smooth
surface in comparison with the porous surfaces. The left side contour plot shows the
normal velocity in a boundary layer over a smooth wall, the middle and right figure
demonstrate the reduction of the Mack mode amplitude. This is visible by comparing the
legends of the figures: The values with pores are one order of magnitude smaller. For the
case with slip boundary condition at Kn = 0.2 (right) an additional reduction is visible
by comparing the ends of the legends with the non-slip boundary condition (middle).
The flow through the pores using slip boundary condition are comparable with a non-slip
boundary condition but an effectively larger diameter. So practically the pores widened
for the instabilities which results in an increasing damping effect by taken into account
the Knudsen number, as described by Maslov et al.5.

[a] [b] [c]

Figure 2: DNS (contours of v): (a) Mack mode developing above a smooth wall, (b) a porous surface
with non-slip boundary condition and (c) slip boundary condition at Kn = 0.2 at nearly the same time

step

4.1.3 Comparison of LST with DNS: Eigenfunctions

It has to be pointed out once more, that both codes provide completely different ap-
proaches, so the comparability of the eigenfunctions has to be shown explicitly. This is
done in figure 3 for smooth wall, porous surface and the additional consideration of the
Knudsen-layer. The eigenfunctions compare well, though for the slip boundary-condition
in figure c differences in the second maximum are visible.
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[a] [b] [c]

Figure 3: Comparison of the amplitude functions - 16 pores: (a) smooth wall, (b) porous surface with
non-slip boundary condition and (c) slip boundary condition at Kn = 0.2

4.1.4 Comparison of LST with DNS: Growth rates

Figure 4 shows the development of the natural logarithm of the v-perturbation root
mean square, integrated in y direction. As the DNS simulation proceeds after some time
steps the unstable mode has emerged from the rough approximation, given as startup
definition and grows strongly over the remainder of the simulation. The growth rates
are extracted from the slopes of the lines. In all cases the DNS predicts slightly lower
growth rates than LST (for exact values see table 2). A very good agreement between
the methods for a smooth wall at 0.8% difference, as well as for the porous wall case
with non-slip at 3.1% difference can be seen. A difference of 7.6% for the case with slip
boundary condition is also in a acceptable range for two completely different calculation
methods. For a better comparison of the damping effect, table 3 shows the percental
damping, dependent on the growth rate of the smooth wall case and on the porous wall
case with non-slip boundary condition. A significant additional damping effect, resulting
from the modelling of Knudsen layer, is visible for both prediction methods: The damping,
expressed in relation to the porous wall case using non-slip boundary conditions is 10.8%
for the DNS and 6.9% for the LST simulation.

[a] [b] [c]

Figure 4: DNS values of disturbance amplitude and LST growth rates - 16 pores: (a) smooth wall, (b)
porous surface with non-slip boundary condition and (c) slip boundary condition at Kn = 0.2
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smooth wall porous wall porous wall
ωi ωi with non-slip ωi with slip at Kn = 0.2

DNS 0.03344 0.02464 0.02199
LST 0.03372 0.02541 0.02366

difference 0.8% 3.1% 7.6%

Table 2: Comparison of the growth rate - 16 pores - pore depth d = 0.8

boundary ωi ωi

condition (% of smooth wall case) (% of porous non-slip wall case)
DNS non-slip 73.7 -
LST non-slip 75.4 -
DNS slip Kn = 0.2 65.8 89.2
LST slip Kn = 0.2 70.2 93.1

Table 3: Comparison of the damping effect - 16 pores - pore depth d = 0.8

4.2 Test cases with 8 pores at Kn = 0.1

The next test cases has been performed with 8 pores, which results to a pore half-width
twice as large as of the former ones with 16 pores, as described at the beginning of section
4. For this reason the Knudsen number has with 0.1 half the size of the previous 16 pore
geometry.

The amplitude growth rates are illustrated in figure 5 including the smooth wall case

[a] [b] [c]

Figure 5: DNS values of disturbance amplitude and LST growth rates: (a) smooth wall, (b) porous
surface with non-slip boundary condition and (c) slip boundary condition

from figure 4 for a better visual comparison of the slope. In addition the previous test
cases are plotted in grey in the diagrams for an easier comparison. As in the previous test
cases, the predicted growth rates, extracted of figure 5, with LST are slightly larger than
with DNS (for exact values see table 4). Due to the larger diameter the damping effect
is higher for 8 pores than for 16. The additional damping effect of the slip boundary
condition is naturally lower for the smaller Knudsen number, but still visible for both
prediction methods: The damping for the DNS, using slip boundary conditions, expressed
in relation to the porous wall case using non-slip boundary conditions is 4.7% (see table
5).
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smooth wall porous wall porous wall
ωi ωi with non-slip ωi with slip at Kn = 0.1

DNS 0.03344 0.01769 0.01686
LST 0.03372 0.01834 0.01768

difference 0.8% 3.7% 4.9%

Table 4: Comparison of the growth rate - 8 pores - pore depth d = 1.5

boundary ωi ωi

condition (% of smooth wall case) (% of porous non-slip wall case)
DNS non-slip 52.9 -
LST non-slip 50.4 -
DNS slip Kn = 0.1 54.4 95.3
LST slip Kn = 0.1 52.4 96.4

Table 5: Comparison of the damping effect - 8 pores - pore depth d = 1.5

4.3 Influence of the pore depth

A detailed study of the influence of the pore depth, including the just listed cases, has
been performed by varying the pore depth for DNS as well as LST. The result is visible
in figure 6, where the growth rate as a function of the pore depth is plotted: Figure 6a
shows the variation of the pore depth d for the test cases with 16 pores and figure 6b for
8 pores.

[a] [b]

Figure 6: Variation of the pore depth: Temporal growth rate ωi versus pore depth d
(a) 16 pores and (b) 8 pores

The points at d = 0 denote the previously shown smooth wall case while the points at
d = 0.8 (6a) and at d = 1.5 (6b) represent the porous ones for which a detailed comparison
was given. As mentioned before, DNS predicts a little bit stronger damping effect of the
pore depth than LST, but the trend of the function is in all cases identical. For deeper
pores the resulting growth rates saturate towards a limit value. Fedorov3 described for
an example test case with cylindrical pores that a pore depth of about 5 diameters is
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boundary 16 pores 8 pores
condition limit-pore depth limit-pore depth

LST non-slip 0.4 1.2
LST slip 0.5 1.4
DNS non-slip 0.5 1.2
DNS slip 0.6 1.5

Table 6: Comparison of the limit-pore depths

sufficient for the appropriate damping rate, which is within the range of our results. In
addition to the pore width, the disturbance frequency plays a certain role. In the following
the minimum pore depth for which the variation of the growth rate is less than 0.5% for
all larger d-values, is denoted as the limit-pore depth and the corresponding growth rate
as the limit-growth rate. This defined limit-pore depth increase with larger pore width.

By modelling of Knudsen layer the pore depth shows a stronger effect in all cases
because of the effectively larger pore width, as described in section 4.1.2. With the
effectively widened pores the transient oscillation behaviour, visible for example in the
shifts of the first minima and second maxima in figure a and b, changes and consequently
the limit pore depth increase, as described before. For the test cases with 8 pores the
limit-pore depth increase from 1.2 to 1.4 (LST) and for the DNS from 1.2 to 1.5. The
same trend can be seen for test case with 16 pores in table 6.

5 Simulations with cold wall

Because hypersonic wind-tunnel tests are usually carried out in blowdown facilities in
which the measurement time is too short to increase the wall temperature significantly,
simulations with a low constant wall temperature were carried out. The wall temperature
was chosen with Tw = 1.35 · T∞. In all cold wall cases the pore half-width is set to
b = 0.046875, corresponding to 13 pores for the DNS, and the Knudsen number has a
value of 0.1. The reason for this change in the pore number is given in 5.1.1.

5.1 Cold wall test cases with 13 pores in comparison with the previous adi-
abatic wall cases with 8 pores

In this subsection a detailed investigation of test cases at a pore depth of d = 6.0,
where a nearly constant growth rate is reached, is carried out. The chosen pore diameters
of these cases are comparable to the adiabatic ones with 8 pores. In table 7 the compared
test cases of this section are listed. The reason for the chosen higher pore depth in
comparison with the adiabatic wall cases results of an increase of the limit-pore depth.
The explanation for that behaviour is following in section 5.2 (Influence of the pore depth).

12
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wall boundary number pore half-width pore depth
condition condition of pores b d

smooth wall cold - 0 0 0
porous wall cold non-slip 13 0.0468750 6.0
porous wall cold slip at Kn = 0.1 13 0.0468750 6.0

These pore quantities correspond to the adiabatic wall case with:

smooth wall adiabatic - 0 0 0
porous wall adiabatic non-slip 8 0.0468750 1.5
porous wall adiabatic slip at Kn = 0.1 8 0.0468750 1.5

Table 7: Overview of the test cases with cold wall including the comparison cases with adiabatic wall

5.1.1 Spatial growth rate - LST results

Figure 7 shows the whole spectrum of the amplified growth rate spectrum of the second
mode using cold wall condition. The first mode is omitted because with cold wall condition
the maximum growth rate of the first mode of the smooth wall case is completely damped
and even with pores the value is below 10−4. For the smooth wall case the second mode
has a maximum growth rate of 0.0486 at the wave number αr = 1.36 and decrease
strongly to a value of 0.0123 using non-slip or 0.0119 by using the slip boundary condition.
The maximum growth rate wavenumber of 1.36 for the smooth wall is nearly 1.6 times
lower than for the adiabatic wall case. According to this, the disturbance frequency
is also 1.6 times lower. The reason for that behaviour could be found in the constant
wall temperature: As mentioned before, the adiabatic wall temperature has a value of
1522.44K, over 5 times larger than the cold wall temperature of 292.48K. Thus for the
cold wall the local viscosity change strongly and, as a consequence, the boundary layer
profiles of the flow quantities. This results in a change of wavenumber and frequency.

Due to the change in the position of the maximum, the wave number αr for all cold wall
cases is set to a fixed value of 1.289, resulting in a domain length Lx of 4.875, calculated
by equation 16. For holding the porosity and the pore width of the previous adiabatic
wall cases, the pore number for the DNS was set to 13 to provide comparability with the
adiabatic 8 pore cases (see table 7).

5.1.2 Comparison of LST and DNS: Limit-Growth rate

Figure 8 shows once more the development of the natural logarithm of the root mean
square of the v perturbations. For a better visual comparison of the slope, the previous
adiabatic test cases are plotted in grey in the diagrams. With cold wall condition the DNS
needs more time steps till the unstable mode has emerged from the startup definition. In
contrast to the adiabatic wall, the slope for the cold wall, corresponding to the extracted
growth rates of the DNS, are a little bit higher than those predicted by LST. Furthermore,
differences between DNS and LST for porous walls are significantly higher than for the
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Figure 7: Spatial growth rate against real part of the wavenumber α calculated by LST - 13 pores

[a] [b] [c]

Figure 8: DNS values of disturbance amplitude and LST growth rates: (a) smooth wall, (b) porous
surface with non-slip boundary condition and (c) slip boundary condition with Kn = 0.1

adiabatic wall cases (see table 8). The reason is the extremely high damping effect for
cold walls: With the porous wall (non-slip condition) the growth rate has only 30.5% of
the original value with LST and 32.9% for DNS (see table 9).

As shown by Fedorov3, the damping effect of the pores increases as the wall temperature
decrease at the same free stream condition. This trend is consistent with the admittance
asymptotic behaviour associated with equations (9) - (12). For deep pores (|md| >> 1)
of relative small pore width (|Λ| << 1), the admittance A is proportional to Ma

√
Tw and

decrease with the wall temperature.
Because of the high damping rate the effect of the slip boundary condition using cold

wall condition is on the first glance smaller in comparison with the adiabatic wall case,
but expressed in relation to the porous wall case using non-slip boundary condition, the
damping for the LST with adiabatic wall is 3.6% while it is for the cold walls 2.1% which
is within the same range.

5.2 Influence of pore depth

To investigate the influence of the pore depth for cold walls, figure 9 shows the growth
rate as a function of the pore depth. Due to the significantly larger number of points
along the boundary layer for cold walls, only the spatial linear stability results without
Gaster Transformation are calculated.

Since the boundary layer profiles change due to the local viscosity as well as the
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smooth wall porous wall porous wall
ωi ωi with non-slip ωi with slip at Kn = 0.1

DNS 0.03188 0.01050 0.01021
LST 0.03092 0.00942 0.00922

difference 3.0% 10.3% 9.7%

Table 8: Comparison of the growth rate - 13 pores - pore depth d = 6.0

boundary ωi ωi

condition (% of smooth wall case) (% of porous non-slip wall case)
DNS non-slip 32.9 -
LST non-slip 30.5 -
DNS slip Kn = 0.1 32.0 97.2
LST slip Kn = 0.1 29.8 97.9

Table 9: Comparison of the damping effect - 13 pores - pore depth d = 6.0

wavenumbers and frequencies, the limit-pore depth for cold walls is with a value of 4.9
much higher than the value calculated with adiabatic walls. An additional increase up
to 5.8 results for the slip boundary condition from the effectively widened pores. How-
ever, the same trend as before for the adiabatic wall is visible: With modelling of the
Knudsen layer the pore depth has a stronger effect in all cases because of the effectively
larger pore width. For a better comparison the envelopes are plotted as dashed lines. An
interesting detail in this case are even negative σ values, so there are ranges of pore depth
where the modes are fully damped. Furthermore the wavelength for the oscillations of σ
is comparable with the wavelength for adiabatic cases (see figure 6) which is explicable
by the physical fact, that the wall-normal extent of the modes is not strongly affected by
the wall temperature. So mainly the damping part in the admittance dependency on d is
affected by the variation of the flow quantities.

6 Conclusion

In the present study a second mode stability analysis was performed for a boundary
layer flow at Mach 6 over different porous walls with and without slip boundary condition
to consider the rarefied gas effect inside the pores. The influence of the Knudsen bound-
ary condition was investigated for different pore diameters, depths and Knudsen numbers
with adiabatic as well as cold walls. Two different approaches were compared successfully:
The linear stability results, calculated by the DLR code NOLOT in comparison with di-
rect numerical simulations including the resolution of the pores. It has been shown that
the trends of the predicted functions of both codes are identical, the limit-pore depths
are nearly the same and differences for the predicted limit-growth rate are in a reasonable
range.

The investigation of the slip boundary condition shows in all cases an additional damp-
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Figure 9: Variation of the pore depth - spatial LST results: Spatial growth rate σ versus pore depth d

ing effect compared with the non-slip approach, resulting from an effective increase of the
pore diameter by this effect. For Knudsen numbers below 0.1 and high porous damping
rates, a negligence of the slip boundary condition could be demonstrated. For higher
Knudsen number the additional damping effect becomes significant and has therefore to
be taken into account.
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